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Abstract

This is the first of two companion papers in which a thorough study of the normal form and the first
integrability conditions arising frombi-conformal vector fields is presented. These new symmetry
transformations were introduced inClass. Quantum Grav. 21, 2153–2177 and some of their basic
properties were addressed there. Bi-conformal vector fields are defined on a pseudo-Riemannian
manifoldV through the differential conditions £�ξ Pab = φPab and £�ξ Πab = χΠab wherePab andΠab

are orthogonal and complementary projectors with respect to the metric tensor gab. In our calculations
a new affine connection (bi-conformal connection) arises quite naturally and this connection enables
us to find a local characterization ofconformally separable pseudo-Riemannian manifolds (also
called double twisted products) in terms of the vanishing of a rank three tensorTabc. Similar local
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1. Introduction

The research of symmetry transformations in Differential Geometry and General Relativ-
ity has been an important subject during the years. Here by symmetries we mean a group of
transformations of a given pseudo-Riemannian manifold complying with certain geometric
property. By far the most studied symmetries are isometries and conformal transformations
which are defined through the conditions

£�ξ gab = 0, £�ξ gab = 2φgab, (1)

where gab is the metric tensor of the manifold,�ξ is theinfinitesimal generator of the trans-
formation andφ is a function which we will callgauge of the symmetry (this terminology
was first employed in[5] and it will be explained later). Infinitesimal generators of these
symmetries are known as Killing vectors and conformal Killing vectors, respectively. As
is very simple to check they are a Lie algebra with respect to the Lie bracket of vector
fields and the transformations generated by these vector fields give rise to subgroups of the
diffeomorphism group.

Important questions are the possible dimensions of these Lie algebras and the geometric
characterizations of spaces admitting the symmetry. The general answer to these questions
can in principle be obtained by solving the differential conditions written above although
for general enough cases the explicit evaluation of such solutions gets too complex and
other methods are required. Notwithstanding these difficulties, we can obtain easily from
the differential conditions the cases in which the Lie algebras are finite dimensional, the
greatest dimension of these Lie algebras and geometric characterizations of the spaces
admitting these Lie algebras as solutions. This is done by finding thenormal form of the
above equations (if such form exists) and the complete integrability conditions coming from
this set of equations. In this way we deduce that isometries are always finite dimensional
whereas conformal motions are finite dimensional iff the space dimension is greater or equal
than three. The spaces in which the greatest dimension is achieved are constant curvature
and conformally flat spaces, respectively and as is very well known they are characterized
by the geometric conditions

Ra
bcd = R

n(n − 1)
(δa

cgbd − δa
dgbc) (constant curvature),

Ca
bcd = 0, n > 3 (conformally flat)

wheren is the dimension of the manifold,Ra
bcd is the curvature tensor,R the scalar curvature

andCa
bcd the Weyl tensor1

The procedure followed for isometries and conformal motions is carried over to other
symmetries such as linear and affine collineations and conformal collineations (see[24,12]
for a very good account of this). However, little research has been done for symmetries
different from these mostly because the cases under consideration were infinite dimensional
generically. This means that it is not possible to obtain a normal set of equations out of the

1 In the case of dimension three manifolds the Weyl tensor is replaced by a three-rank tensor called the Cotton-
York (or Schouten) tensor.
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differential conditions (see Section4) which greatly complicates matters. Mathematicians
have developed an alternative view toward this issue in the theory ofG-structures (see e.g.
[17] for a thorough description of this).

In reference[10] we put forward a new symmetry transformation for general pseudo-
Riemannian manifolds. Infinitesimal generators of these symmetries (bi-conformal vector
fields) fulfill the differential conditions

£�ξ Pab = φPab, £�ξ Πab = χΠab, (2)

where Pab and Πab are orthogonal and complementary projectors with respect to the
metric tensor gab andφ, χ are the gauges of the symmetry. These are functions which, as
happened in the conformal case, depend on the vector field�ξ so a solution of(2) is formed
by �ξ itself and the gaugesφ andχ (we will usually omit the dependence on�ξ in the gauges).
The finite transformations generated by bi-conformal vector fields are called bi-conformal
transformations. In a sense, these symmetries can be regarded as conformal transformations
with respect to bothPab andΠab so we can expect that some properties of bi-conformal
vector fields will resemble those of conformal transformations. In[10] it was shown that bi-
conformal vector fields comprise a Lie algebra under the Lie bracket and that this algebra is
finite dimensional if none of the projectors has algebraic rank one or two being the greatest
dimension

N = 1
2p(p + 1) + 1

2(n − p)(n − p + 1),

with p the algebraic rank of one of the projectors. We provided also explicit examples
in which this dimension is achieved, namely bi-conformally flat spaces which in local
coordinatesx = {x1, . . . , xn} look like (α, β = 1, . . . , p; A, B = p + 1, . . . , n)

ds2 = Ξ1(x)ηαβ dxα dxβ + Ξ2(x)ηAB dxA dxB, Ξ1, Ξ2 ∈ C3, (3)

whereηαβ, ηAB are flat metrics depending only on the coordinatesxα andxA respectively.
That these spaces play the same role for bi-conformal vector fields as conformally flat
spaces or spaces of constant curvature do for the classical symmetries will be a result
of the analysis started in this paper. One can also find a geometric characterization
for bi-conformally flat spaces similar to those of the spaces of constant curvature or
conformally flat spaces stated in (2) (full details of this are contained in[11]). In the
scheme developed in[10] this sort of characterization could not be extracted due to the
complexity of the calculations and it had to be postponed.

In this paper we perform the full calculation of the normal form for Eq.(2). This nor-
mal form is already present in our previous work but it turned out to be rather messy
and relevant geometric information could not be obtained. This was so because all these
calculations were done using the covariant derivatives arising from the metric connec-
tion which is not adapted to the calculations. Here we show that the definition of a new
symmetric connection (bi-conformal connection) greatly simplifies the calculations mak-
ing it possible to get a simpler form for the normal system. Due to the great amount of
algebra required to work out the complete integrability conditions associated to the nor-
mal form we have placed its analysis together with the geometric characterization of the
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maximal spaces in a subsequent paper (a complete version of all our results can be found
in [11]).

The bi-conformal connection bears an interesting geometric interpretation if we work on
conformally separable pseudo-Riemannian manifolds. These are defined as those manifolds
which in a local coordinate system the metric tensor takes the form (the conventions are the
same as in(3))

ds2 = Ξ1(x)gαβ dxα dxβ + Ξ2(x)GAB dxA dxB,

wheregαβ andGAB only depend on the coordinates labelled by their index components.
The bi-conformal connection is naturally adapted to this decomposition and its use permits
us to give a new simple geometric characterization of these spaces in terms of the vanishing
of a certain rank-three tensorTabc. The most known cases of conformally separable
pseudo-Riemannian manifolds are warped products, double warped products, twisted
products and conformally reducible spaces (seeDefinition 12for a precise account of each
case) and we can easily derive with our techniques local geometric characterizations for
these spaces (Theorem 16).

The outline of the paper is as follows: Section2 introduces the basic notation and defi-
nitions. In Section3 we define a new symmetric connection (bi-conformal connection) and
we set its main properties. Section4 presents the calculation of the normal form associated
to (2) and the calculation of the maximum dimension of any finite dimensional Lie algebra
of bi-conformal vector fields is carried out. In Section5we use the bi-conformal connection
to supply a local geometric characterization of conformally separable pseudo-Riemannian
manifolds and their principal subcases. Finally in Section6 we show in explicit examples
how to use this geometric characterization and we hint how these conditions may be ex-
tended to more general pseudo-Riemannian manifolds.Appendix Acollects basic identities
relating the Lie derivative and the covariant derivative.

2. Bi-conformal vector fields and bi-conformal transformations

Let us start by setting our notation and conventions for the paper. We work on a differen-
tiable manifoldV in which aC∞ metric gab of arbitrary signature has been defined (pseudo-
Riemannian manifold). Vectors and vector fields are denoted with arrowed characters�u,
�v (we leave to the context the distinction between each of these entities) when expressed
in coordinate-free notation whereas 1-forms are written in bold charactersu. Sometimes
this same notation will be employed for other higher rank objects such as contravariant
and covariant tensors. Indexes of tensors are represented by lowercase Latin charactersa,
b, . . . and the metric gab or its inverse gab are used to respectively raise or lower indexes.
Rounded and square brackets are used for symmetrization and antisymmetrization, respec-
tively and whenever a group of indexes is enclosed between strokes they are excluded from
the symmetrization or antisymmetrization operation. Partial derivatives with respect to lo-
cal coordinates are∂a ≡ ∂/∂xa. The Levi-Civita connection associated to gab is γa

bc (Ricci
rotation coefficients) reserving the symbolΓ a

bc only for the Christoffel symbols, namely,
the connection components in a natural basis. The covariant derivative and the Riemann
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tensor constructed from this connection are denoted by∇ andRa
bcd respectively being our

convention for the Riemann tensor

Ra
bcd ≡ ∂cΓ

a
db − ∂dΓ

a
cb + Γ a

rcΓ
r
db − Γ a

rdΓ
r
cb. (4)

Under this convention the Ricci identity becomes

∇b∇cu
a − ∇c∇bu

a = Ra
rbcu

r, ∇b∇cua − ∇c∇bua = −Rr
abcur.

All the above relations are still valid for a non-metric symmetric connection.
The set of smooth vector fields of the manifoldV is denoted byX(V ). This is an infinite

dimensional Lie algebra which is sometimes regarded as the Lie algebra of the group of
diffeomorphisms of the manifoldV. Finally the Lie derivative operator with respect to a
vector field�ξ is £�ξ.

One of the main subjects of this paper is the study of bi-conformal vector fields whose
definition given in[10] we reproduce here.

Definition 1. A smooth vector field�ξ on V is said to be abi-conformal vector field if it
fulfills the condition

£�ξ Pab = φPab, £�ξ Πab = χΠab, (5)

for some functionsφ, χ ∈ C∞(V ).

Pab andΠab are smooth sections of the tensor bundleT 0
2 (V ) such that at each point

x ∈ V they form a pair of orthogonal and complementary projectors with respect to the
metric tensor gab|x. This leads to

Pab = Pba, Πab = Πba, Pab + Πab = gab, PapPp
b = Pab,

ΠapΠp
b = Πab, PapΠp

b = 0.

Eq. (5) can be re-written in a number of equivalent ways as shown next. To that end we
define the tensorSab in terms of the projectorsPab andΠab by

Sab ≡ Pab − Πab ⇒ Pab = 1
2(gab + Sab),

Πab = 1
2(gab − Sab) ⇒ SapSp

b = gab. (6)

The last property of this set means thatSab is a square root of the metric tensor. It is not
difficult to prove that the endomorphismSa

b can be always diagonalized and the only
possible eigenvalues are+1 and−1 being the associated eigenspaces the subspaces upon
which the projectorsPa

b andΠa
b project. Other interesting point is that a square root is

always thesuperenergy of a simple form (see[10] for further details).
In terms of the square rootSab the conditions(5) take the equivalent form

£�ξ gab = αgab + βSab, £�ξ Sab = αSab + βgab,

α = 1
2(φ + χ), β = 1

2(φ − χ). (7)
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From Eq.(6) we deduce that both projectors are fixed by the square rootSab so we can use
the latter instead of the projectors when working with a given set of bi-conformal vector
fields. Following[10] the set of bi-conformal vector fields possessingSab as the associated
square root will be denoted byG(S). In this paper only expressions involvingPab andΠab

will be used in our calculations. A very important property ofG(S) is that it forms a Lie
subalgebra ofX(V ) (proposition 5.2 of[10]) which can be finite or infinite dimensional.
Conditions upon the tensorSab (or equivalently the projectors) for this Lie algebra to be
finite dimensional were given in[10] and they will be re-derived in Section4 in a more
efficient way. Observe that the functionsφ andχ appearing inDefinition 1(or α andβ) do
depend on the bi-conformal vector field�ξ (this dependence can be dropped if we work with
a single bi-conformal vector field but it should be added when working with Lie algebras of
bi-conformal vector fields). In the latter caseφ andχ (α andβ) are calledgauge functions
(see[5] for an explanation of this terminology).

The next set of relations comes straight away from(5)

£�ξ Pa
b =£�ξ Πa

b = 0, £�ξ Pab = −φPab, £�ξ Πab = −χΠab. (8)

Here the last pair of equations are equivalent to(5).

3. The bi-conformal connection

As we have commented in the introduction the Levi-Civita connectionγa
bc is not suitable

to study the normal form and the integrability conditions coming from the differential
condition(5) as they result in rather cumbersome expressions. In order to proceed further
in our study we are going to show next that the definition of a new symmetric connection
greatly simplifies the normal form calculated in[10] and what is more, it will enable us to
work out thoroughly the complete integrability conditions arising from this normal form in
a subsequent work.

To start with we recall some identities satisfied by any bi-conformal vector field�ξ which
were obtained in[10]. These identities are in fact linear combinations of the first covariant
derivative of(5) and we also indicate briefly how they are obtained as this information will
be needed later. Using Eq.(A.4) we easily obtain the Lie derivative of the metric connection
γa

bc (φb ≡ ∂bφ, χb ≡ ∂bχ)

£�ξ γa
bc = 1

2(φbP
a
c +φcP

a
b −φaPbc +χbΠ

a
c +χcΠ

a
b −χaΠcb + (φ − χ)Ma

bc), (9)

where the tensorMabc is defined by

Mabc ≡ ∇bPac + ∇cPab − ∇aPbc. (10)

The Lie derivative ofMabc can be worked out by means of(A.2) getting

£�ξ Mabc = φMabc + (χ − φ)PapMp
bc − PbcΠapφp + ΠcbPapχp

= χMabc + (φ − χ)ΠapMp
bc − PbcΠapφp + ΠcbPapχp, (11)
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from which, projecting down withPbc andΠbc, we deduce

£�ξ Ea = −pΠapφp, £�ξ Wa = (p − n)Papχp, (12)

with the definitions

Ea ≡ MacbP
cb, Wa ≡ −MacbΠ

cb, p = Pa
a.

The following algebraic properties of the tensorsEa andWa are useful

ΠacE
c = Ea, PacW

c = Wa, 0 = PabEb = ΠabWb. (13)

Now, we substitute(12) into (11)yielding

£�ξ

(
Macb − 1

p
EaPbc + 1

n − p
WaΠcb

)
= φ

(
ΠapMp

cb − EaPbc

p

)

+ χ

(
PapMp

bc + ΠcbWa

n − p

)
. (14)

This equation can be written in a more compact form

£�ξ Tabc = (φΠar + χPar)T
r
bc = φBabc + χAabc, (15)

where the definitions of the tensorsTabc, Aabc, Babc are

Tabc ≡ Mabc + 1

n − p
WaΠbc − 1

p
EaPbc, (16)

Aabc ≡ Pa
dTdbc = Pa

dMdcb + 1

n − p
WaΠcb, (17)

Babc ≡ Πa
dTdbc = Πa

dMdcb − 1

p
EaPcb. (18)

Using Eq.(15)we can calculate the Lie derivatives ofAa
bc andBa

bc

£�ξ Aa
bc = (χ − φ)Aa

bc, £�ξ Ba
bc = (φ − χ)Ba

bc, (19)

a relation which shall be used later.
Let us now use all this information to write the Lie derivative of the connection in a

convenient way. Note that in Eq.(11)φa andχa appear projected withPa
b andΠa

b respec-
tively suggesting that it could be interesting to write any derivative ofφ andχ decomposed
in transverse and longitudinal parts

φ∗
a ≡ Πabφ

b, φ̄a ≡ Pabφ
b, χ∗

a ≡ Pabχ
b, χ̄a ≡ Πabχ

b. (20)

If we perform this decomposition in Eq.(9) and replace the termsφ∗
a andχ∗

a by means of
(12)we get the relation

£�ξ

(
γa

bc+ 1

2p
(EbP

a
c+EcP

a
b−PbcE

a)+ 1

2(n − p)
(WbΠ

a
c+WcΠ

a
b − WaΠcb)

)

= 1

2
(φ̄bP

a
c+φ̄cP

a
b−φ̄aPbc+χ̄bΠ

a
c+χ̄cΠ

a
b−χ̄aΠcb) + 1

2
(φ − χ)T a

bc, (21)
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but from(19), (17) and (18)we easily deduce

£�ξ (Aa
bc − Ba

bc) = (χ − φ)T a
bc,

hence Eq.(21)becomes, after some simplifications

2 £�ξ

(
γa

bc+ 1

2p
(EbP

a
c + EcP

a
b)+ 1

2(n − p)
(WbΠ

a
c+WcΠ

a
b) + 1

2
(Pa

p − Πa
p)Mp

cb

)
= φ̄bP

a
c + φ̄cP

a
b − φ̄aPcb + χ̄bΠ

a
c + χ̄cΠ

a
b − χ̄aΠcb. (22)

The geometric object inside the Lie derivative, denoted byγ̄a
bc, is the sum of the metric

connectionγa
bc plus the rank-3 tensor

La
bc ≡ 1

2p
(EbP

a
c +EcP

a
b)+ 1

2(n − p)
(WbΠ

a
c +WcΠ

a
b)+ 1

2
(Pa

p −Πa
p)Mp

bc,

(23)

so it is clear that it represents a new linear connection. As we will see during our calculations
this linear connection is fully adapted to the calculations involving bi-conformal vector fields
and it will be extensively used in this paper.

Definition 2 (Bi-conformal connection). The connection whose components are given
by γ̄a

bc is called bi-conformal connection. The covariant derivative constructed from the
bi-conformal connection shall be denoted by∇̄ and the curvature tensor constructed from
it by R̄a

bcd .

SinceLa
bc is symmetric in the indexesbc, we see that the bi-conformal connection is

symmetric so it has no torsion and all the identities involving only the covariant derivative
∇̄ or the curvaturēRa

bcd remain the same as for the case of a metric connection. However,
this connection does not in general stem from a metric tensor as can be seen in explicit
examples. This means that certain properties of the curvature tensor of a metric connection
are not true for̄Ra

bcd . We recall that for a symmetric connection the Riemann tensor is only
antisymmetric in the last pair of indexes.

Connections defined in terms ofPab, Πab and their covariant derivatives as in(23)
have been already considered in the literature in relation with the study of integrable
and parallel distributions [19–22] (see also[17]). A distribution can be univocally
fixed by means of two orthogonal and complementary projectorsPa

b, Πa
b and so the

study of these projectors can give us information about the geometric properties of the
distribution.

It is not very difficult to derive an identity relating the curvature tensor calculated
from the bi-conformal connection and the curvature tensor associated to the connection
γa

bc

R̄a
bcd = Ra

bcd + 2∇[cL
a
d]b + 2La

r[cL
r
d]b, (24)
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this being a thoroughly general identity for two symmetric connectionsγ̄a
bc and γa

bc

differing in a tensorLa
bc ([18], p. 141).

The relation between the covariant derivatives∇̄ and∇ acting on any tensorX
a1...ap

b1...bq
is

∇̄aX
a1...ar

b1...bq
= ∇aX

a1...ar

b1...bq
+

r∑
s=1

Las
acX

a1...as−1cas+1...ar

b1...bq

−
q∑

s=1

Lc
absX

a1...ar

b1...bs−1cbs+1...bq
, (25)

which again has general validity for two symmetric connections whose difference is a tensor
La

bc [7]. As a first application of this identity we may compare the covariant derivatives of
the tensorLa

bc which leads us to the identity

∇̄[aL
b
c]d = ∇[aL

b
c]d + 2Lb

r[aL
r
c]d,

from which we can rewrite(24) in terms of∇̄
Ra

bcd = R̄a
bcd − 2∇̄[cL

a
d]b + 2La

r[cL
r
d]b. (26)

Of course this last equation could have been obtained from(24)by means of the replacements
Ra

bcd ↔ R̄a
bcd , La

bc → −La
bc and∇a → ∇̄a.

Example 3. To realize the importance of the bi-conformal connection in future calculations,
let us calculate its components for aconformally separable pseudo-Riemannian manifold
(seeDefinition 11) given in local coordinatesx ≡ {x1, . . . , xn} by

ds2 = Ξ1(x1, . . . , xn)Gαβ(xδ) dxα dxβ + Ξ2(x1, . . . , xn)GAB(xC) dxA dxB. (27)

Here Greek indexes range from 1 top and uppercase Latin indexes fromp + 1 to n so the
metric tensorsGαβ andGAB are of rankp andn − p respectively. The tensorsGαβ and
GAB are defined in the obvious way and they are used to raise Greek and uppercase Latin
indexes respectively. The non-zero Christoffel symbols for this metric are

Γ α
βγ = 1

2Ξ1
Gαρ(∂β(Ξ1Gαρ) + ∂γ (Ξ1Gρβ) − ∂ρ(Ξ1Gβγ )),

Γ A
BC = 1

2Ξ1
GAD(∂B(Ξ1GCD) + ∂C(Ξ1GDB) − ∂D(Ξ1GBC)),

Γ α
βA = 1

2Ξ1
δα

β∂AΞ1, Γ A
Bα = 1

2Ξ2
δA

B∂αΞ2,

from which the only nonvanishing components ofMabc, Ea, Wa are

MαAB = ∂α(Ξ2GAB), MAαβ = −∂A(Ξ1Gαβ),

EA = − ∂A log |det(Ξ1Gαβ)|, Wα = −∂α log |det(Ξ2GAB)|. (28)

Therefore we get for the components of the bi-conformal connection
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Γ̄ α
βφ = 1

2Ξ1
(δα

β∂φΞ1 + δα
φ∂βΞ1 − GαρGβφ∂ρΞ1) + Γ α

βφ(G),

Γ̄ A
BC = 1

2Ξ2
(δA

B∂CΞ2 + δA
C∂BΞ2 − GARGBC∂RΞ2) + Γ A

BC(G),

Γ̄ α
βC = Γ̄ A

Bφ = 0, (29)

whereΓ α
βφ(G) andΓ A

BC(G) are the Christoffel symbols of the metricsGαβ andGAB,
respectively. From the above formulae we deduce that the bi-conformal connection is fully
adapted to a conformally separable pseudo-Riemannian manifold because its components
clearly split in two parts being each of them the Christoffel symbols of the metricsGαβ,GAB

plus terms involving the derivatives of the factorsΞ1 andΞ2. We will take advantage of this
property in Section5 where we will find an invariant local characterization of conformally
separable pseudo-Riemannian manifolds.

We calculate next the covariant derivative with respect to the bi-conformal connection
of a number of tensors.

Proposition 4. The following identities hold true

∇̄aPbc = ∇aPbc − 1

p
EaPbc − 1

2p
(EbPac + EcPab) − 1

2
(PcpMp

ab + PbpMp
ac),

(30)

2∇̄aP
b
c = 2∇aP

b
c + PbqPr

cMqra − ΠbqPr
cMqra − Pb

qM
q
ac

+ 1

n − p
WcΠ

b
a − 1

p
EcP

b
a, (31)

∇̄aP
bc = ∇aP

bc + 1

p
EaP

bc + 1

2(n − p)
(WcΠb

a + WbΠc
a) −

− 1

2
(Mb

arP
rc + Mc

arP
rb), (32)

and all the identities formed with the replacements Pab → Πab, p → n − p.

Proof. All these identities are proven by means of(25)and the use of properties(13). �

Using the above properties we can get more interesting identities to be used later on.

∇̄aP
ab = ∇̄aΠ

ab = ∇̄aP
a
b = ∇̄aΠ

a
b = 0, (33)

Pbc∇̄aPbc = −Ea, Pbc∇̄aP
bc = Ea, (34)

Πbc∇̄aΠbc = −Wa, Πbc∇̄aΠ
bc = Wa, (35)

Pd
r∇̄bΠ

r
d = Πd

r∇̄bP
r
d = Pdr∇̄dPrb = Πdr∇̄dΠrb = 0. (36)
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Note that index raising and lowering do not commute with∇̄ so we must be very careful
when we raise or lower indexes in tensor expressions involving∇̄.

4. Normal form and dimension of maximal Lie algebras of bi-conformal fields

We turn now our attention to the calculation of the full normal form coming from the
differential conditions(5). A detailed explanation of the general procedure and relevance of
this calculation for a general symmetry can be found in[8,10] (see also[24] for the calcu-
lation in the cases of the most studied symmetries in General Relativity such as isometries
and conformal motions). Before starting the calculation and for the sake of completeness
let us give a very brief sketch of the whole procedure. We must differentiate the condition
(5) a number of times in such a way that we get enough equations to isolate the derivatives
of certain variables (system variables) in terms of themselves (this is achieved typically
by means of the resolution of a linear system of equations). The so obtained derivatives
give rise to the normal form associated to our symmetry. Along the differentiating process
one may obtain equations whose linear combinations no longer contain derivatives of the
system variables (constraints). Examples of such constraints in our case are the differential
conditions themselves and(12) (actually these are the only constraints as we will show in
Section4.2).

It is possible to meet cases in which the normal form cannot be achieved. This means
that one cannot obtain enough equations to isolate all the derivatives obtained through the
derivation process. The main implication of this is that the Lie algebra of vector fields
fulfilling the starting differential condition is infinite dimensional as opposed to the case
in which there is such a normal form. Therefore the calculation of the normal form allows
us to tell apart the cases with an infinite dimensional Lie algebra of vector fields from
those representing finite dimensional Lie algebras. In the latter case we can even go further
and determine the highest dimension of these Lie algebras as the total number of system
variables minus the number of linearly independent constraints.

We start out our calculation with the substitution of(22) into (A.1) which yields

∇̄b
a
c + ξdR̄a

cdb = 1
2(φ̄bP

a
c + φ̄cP

a
b − φ̄aPcb + χ̄bΠ

a
c + χ̄cΠ

a
b − χ̄aΠcb),

Ψca ≡ ∇̄cξ
a. (37)

Next we replace in(A.3) the Lie derivatives of the bi-conformal connection by their expres-
sions given by(22)getting

£�ξ R̄d
cab = ∇̄[aφ̄b]P

d
c + Pd

[b∇̄a] φ̄c − Pc[b∇̄a] φ̄
d + ∇̄[aχ̄b]Π

d
c + Πd

[b∇̄a] χ̄c

− Πc[b∇̄a] χ̄
d + φ̄[b∇̄a]P

d
c + φ̄c∇̄[aP

d
b] − φ̄d∇̄[aPb]c + χ̄[b∇̄a]Π

d
c

+ χ̄c∇̄[aΠ
d
b] − χ̄d∇̄[aΠb]c. (38)

The game is now to isolate from this expression∇̄aφ̄b and∇̄aχ̄b (these rank-2 tensors are
not symmetric in general). The forthcoming calculations split in two groups which are dual
under the interchangePab ⇔ Πab, p ⇔ n − p (only the calculations of the first group are
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shown). Multiplying(38)by Pa
r we obtain

£�ξ (Pd
rR̄

r
cab) = Pd

c∇̄[aφ̄b] + Pd
[b∇̄a] φ̄c − Pd

rPc[b∇̄a] φ̄
r − Pd

rΠc[b∇̄a] χ̄
r

+ Pd
rφ̄[b∇̄a]P

r
c + φ̄cP

d
r∇̄[aP

r
b] − φ̄d∇̄[aPb]c

+ Pd
rχ̄[b∇̄a]Π

r
c + χ̄cP

d
r∇̄[aΠ

r
b] . (39)

Contraction of the indexesd-c in the above expression yields

∇̄aφ̄b = ∇̄bφ̄a + 2

p
£�ξ (Pd

rR̄
r
dab), (40)

while the contraction of indexesd-a and use of identities(33)-(36)entails

2 £�ξ (Pd
rR̄

r
cdb) = Pd

c∇̄dφ̄b + Pd
b∇̄dφ̄c − φ̄r∇̄rPbc − ∇̄aφ̄

aPbc − p∇̄bφ̄c. (41)

Eqs.(40) and (41)can now be combined in a single expression which is

2 £�ξ

[
Pd

rR̄
r
cdb − 1

p
(Pd

cP
r
qR̄

q
rdb + Pd

bP
r
qR̄

q
rdc − Pr

qR̄
q
rbc)

]
= (2 − p)∇̄bφ̄c − ∇̄aφ̄

aPbc − φ̄d(∇̄bP
d
c + ∇̄cP

d
b + Prd∇̄rPbc). (42)

Multiplying here withPcb leads, after a little bit of algebra, to

∇̄aφ̄
a = 1

1 − p
(£�ξ R̄0 + φR̄0), p �= 1, R̄0 = Pd

rR̄
r
cdbP

cb, (43)

On the other hand(42)can be further simplified if we take into account the identity

∇̄bP
d
c + ∇̄cP

d
b − Prd∇̄rPbc = Πrd∇rPbc + 1

2
(ΠdqΠr

cMqrb + ΠdqΠr
bMqrc)

+ 1

2(n − p)
(WcΠ

d
b + WbΠ

d
c),

which is easily derived by writing all the covariant derivatives with respect to the
bi-conformal connection of the projectors in terms of ordinary covariant derivatives
(Proposition 4). So plugging(43) into (42)we get

(2 − p)∇̄bφ̄c =£�ξ L0
bc + 2φ̄r∇̄rPbc, (44)

where

L0
bc≡2

[
Pd

rR̄
r
cdb− 1

p
(Pd

cP
r
qR̄

q
rdb + Pd

bP
r
qR̄

q
rdc − Pr

qR̄
q
rbc)

]
+ R̄0

1 − p
Pbc.

(45)

The duals of(44) and (45)are

(2 − n + p)∇̄bχ̄c =£�ξ L1
bc + 2χ̄r∇̄rΠbc, (46)
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and

L1
bc ≡ 2

[
Πd

rR̄
r
cdb− 1

n − p
(Πd

cΠ
r
qR̄

q
rdb + Πd

bΠ
r
qR̄

q
rdc − Πr

qR̄
q
rbc)

]

+ R̄1

1 − n + p
Πbc, R̄

1 ≡ Πd
rR̄

r
cdbΠ

cb. (47)

To complete the normal form we need now the derivatives ofφ∗
a andχ∗

a which are obtained
through the differentiation of(12) (identity (A.2) must be used to get these derivatives)

−p∇̄bφ
∗
a =£�ξ (∇̄bEa) + 1

2(χ̄bEa + χ̄aEb − (χ̄rEr)Πab), (48)

(p − n)∇̄bχ
∗
a =£�ξ (∇̄bWa) + 1

2(φ̄bWa + φ̄aWb − (φ̄rWr)Pab) (49)

4.1. Normal form of the differential conditions

The above calculations give us the sought normal form for the differential conditions(5)
being these gathered in the following set of equations

∇̄aφ = φ̄a + φ∗
a, ∇̄aχ = χ̄a + χ∗

a, (a)

∇̄bφ
∗
a = −1

p

[
£�ξ (∇̄bEa) + 1

2(χ̄bEa + χ̄aEb − (χ̄rEr)Πab)
]
, (b)

∇̄bχ
∗
a = 1

p−n

[
£�ξ (∇̄bWa) + 1

2(φ̄bWa + φ̄aWb − (φ̄rWr)Pab)
]
, (c)

∇̄bφ̄c = 1
2−p

[£�ξ L0
bc + 2φ̄r∇̄rPbc], (d)

∇̄bχ̄c = 1
2−n+p

[£�ξ L1
bc + 2χ̄r∇̄rΠbc], (e)

∇̄bξ
a = Ψba, (f)

∇̄bΨca = 1
2(φ̄bP

a
c + φ̄cP

a
b − φ̄aPcb + χ̄bΠ

a
c + χ̄cΠ

a
b − χ̄aΠcb)−ξdR̄a

cdb. (g)

(50)

A first glance at these equations reveals us that this normal form does not always exist. To
be precise if eitherp = 2 or p = n − 2 the derivatives̄∇aφ̄b and∇̄aχ̄b cannot be isolated
and the system cannot be “closed” (in fact these derivatives cannot be isolated even if
we perform further derivatives of any of the above equations). We must also remember
at this point that the tensorsL0

ab andL1
ab are well-defined unlessp = 1 andp = n − 1

respectively (see Eqs.(45) and (47)). Therefore we have proven the following theorem
(compare to Proposition 6.2 of[10])

Theorem 5. The only cases in which the Lie algebra G(S) can be infinite dimensional occur
if and only if p = 1, p = 2, p = n − 1, p = n − 2.

The result of this theorem is intuitively clear if we realize that bi-conformal vector fields
are somehow conformal motions for the projectorsPab andΠab. Therefore if any of them
projects onto one or two dimensional vector spaces the associated Lie algebras may turn
out to be infinite dimensional as we have just found.
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Eqs.(50)are no longer a normal form system if some of the derivatives involved vanish.
This happens for instance if part of the gauge functions are constants or their second covariant
derivatives with respect to the bi-conformal connection are zero. In all this work we will
assume that these derivatives are not zero in an open neighbourhood of a point leaving the
study of any other cases for a forthcoming publication.

The normal form can be used to establish the minimum conditions under which bi-
conformal vector fields are smooth vector fields.

Proposition 6. Let �ξ be a bi-conformal vector field at least C2 in a neighbourhood Ux of
a point x belonging to a manifold V with a C∞ metric tensor. If φ, χ are at least C2 on Ux

then �ξ ∈ C∞(Ux).

Proof. To prove this result it is enough to show that the covariant derivatives of�ξ with
respect to the bi-conformal connection exist at any order. The first and second derivatives
of �ξ are Eqs.(50)-f and(50)-g and higher derivatives are calculated from this last equation.
When we derive(50)-g we need∇̄bφ̄c and∇̄bχ̄c which exist onUx asφ, χ ∈ C2(Ux) and
these are obtained through Eq.(50)-d and(50)-e in which only derivatives of�ξ, φ̄a andχ̄a

of order less or equal than one appear. This makes clear that no other equation of(50) but
the ones mentioned so far are involved in the calculation of the derivatives of�ξ and so we
can obtain them in as high order as we wish.�

Related to this is the following result (the technique used in the proof has been employed
in [12] for other symmetries in the framework of General Relativity).

Proposition 7. Under the hypotheses of previous proposition if a bi-conformal vector field
�ξ is such that ξa|x = 0, ∇̄bξ

a|x = 0, ∇̄c∇̄bξ
a|x = 0 then �ξ ≡ 0 in a neighbourhood of x.

Proof. Evaluation of the last equation of(50)at x entails

(φ̄bP
a
c + φ̄cP

a
b − φ̄aPcb + χ̄bΠ

a
c + χ̄cΠ

a
b − χ̄aΠcb)|x = 0,

from which, projecting down withPab andΠab, we deduce that̄φa|x = χ̄a|x = 0. Now let
γ(t) be a smooth curve onV such thatγ(0) = x with γ(t) lying in a coordinate neighbourhood
of x for all t in the interval (−ε, ε). If we denote bẏγa(t) the tangent vector to this curve we
may define the derivatives

D̄φ̄a

dt
≡ γ̇ r∇̄rφ̄a,

D̄χ̄a

dt
≡ γ̇ r∇̄rχ̄a,

D̄ξa

dt
≡ γ̇ r∇̄rξ

a,
D̄Ψca

dt
≡ γ̇r∇̄rΨca,

where all quantities are evaluated onγ(t). Contracting(50)-d–(50)-g with γ̇b we can trans-
form these equations into a first order ODE system in the variablesφ̄a(γ(t)), χ̄a(γ(t)),
ξa(γ(t)) andΨab(γ(t)) with D̄/dt as derivation. From the above all these variables vanish
at t = 0 so according to the standard theorem of uniqueness for ODE systems the variables
are identically zero along the curveγ(t) (and in particular�ξ|γ(t) = 0). Asγ(t) was chosen
arbitrarily we conclude that�ξ ≡ 0 in a whole neighbourhood ofx. �
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Remark 8. If the manifold is connected (and hence path connected) then the curveγ(t)
can be chosen joining any pair of points of the manifold and then the vector field�ξ is zero
everywhere and not just in a single neighbourhood of a point.

From the calculations performed in this proof and in the proof ofProposition 6we deduce
as a simple corollary that̄∇(m)ξa|x ≡ 0 for all m ∈ N if it holds for m = 1, 2.

4.2. Constraints

From the above calculation of the normal form, the system variables are read off at once.
These are the variables appearing under derivation in the left hand side of(50). However,
they are not algebraically independent because in the calculation process of(50)some of the
equations involved do not contain derivatives of the variables at all (system constraints). The
most evident case of these constraints are the differential conditions(5) themselves. If we
review the whole procedure followed to get(50)we deduce that the other set of constraints
between the system variables is(12)so(50)must be complemented with

(I) £�ξ Pab = φPab, £�ξ Πab = χΠab,

(II) £�ξ Ea = −pφ∗
a, £�ξ Wa = −(n − p)χ∗

a (51)

In order to clarify that these two sets of equations are truly the constraints associated with
(50) we must show that they arise as a linear combination of some of the higher covariant
derivatives of(5) employed to get the normal form. An equation equivalent to the first
derivative of(5) is (11) but only its projections byPab andΠab (Eq. 12) really matter to
work out the normal form and these are(51)-II. Eq. (37) is also obtained from(11) and it
is part of the normal system and not a constraint. As for the other derivatives they do not
give rise to any more equations with no derivatives of the system variables so the above
equations are the only constraints we must care about.

A first application of all the above calculations comes in the following result, already
proven in[10] using a normal form system written in terms of different variables.

Theorem 9. If the Lie algebra G(S) is finite dimensional then its dimension is bounded
from above by N = p(p + 1)/2 + (n − p)(n − p + 1)/2.

Proof. To prove this theorem we must state what the upper bound to the maximum number
of integration constants for the system(50) is. As is very well known from the theory of
normal systems of PDE’s (see e.g.[8]) such number is the number of system variables
minus the number of linearly independent constraints. The following table summarizes
these numbers for our system.

We have written explicitly the system variables and the total number for each of them.
The constraints are also indicated together with how many linearly independent equations
each constraint amounts to. This last part is not evident as opposed to the counting for
the system variables so the rest of the proof is devoted to show that the numbers given in
Table 1for the constraint equations are indeed correct.
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Table 1
Calculation of the highest dimension ofG(S)

System variables Constraints

φ, χ φ∗
a, φ̄a χ∗

a, χ̄a ξa Ψab Eq.(51)-I Eq. (51)-II
2 n n n n2 n(n + 1)/2 + p(n − p) n

Eq.(51)-I. First of all, we expand the Lie derivatives of these equations

ξc∇̄cPab + Ψpc(δp
aPbc + δp

bPac) = φPab,

ξc∇̄cΠab + Ψpc(δp
aΠbc + δp

bΠac) = χΠab, (52)

where the standard definition of the Lie derivative of a tensorPab has been applied

£�ξ Pab ≡ ξc∇̄cPab + ∇̄aξ
cPcb + ∇̄bξ

cPac, (53)

(observe that the general formula of the Lie derivative with respect to a vector in terms of
its covariant derivatives still holds under a symmetric connection). We define new indexes
A, B, B′ in such a way that

PA ≡ Pab, ΨB ≡ ∇̄pξq, ξB′ = ξc,

so capital indexes group together certain combinations of small indexes (explicitlyA =
{a, b}, B = {p, q} andB′ = c). The ranges of the new indexes areA = 1, . . . , n(n + 1)/2,
B = 1, . . . n2, B′ = 1, . . . n. Using these new labels we can write in matrix notation the
homogeneous system posed by these constraints (we only concentrate in the first of(52))

(MA
B (∇̄P)B′A PA )




ΨB

ξB′

−φ


 = 0, (54)

(A = row index,B, B′ = column indices) where the explicit expressions of the matrices read

(∇̄P)B′A = ∇̄cPab, MA
B = δp

aPbq + δp
bPaq.

The number of linearly independent equations is just the rank of the matrix system of
(54). In principle the rank of this matrix will depend on the projectorPab and its covariant
derivative, meaning this that it will depend on the geometry of the manifold. However,
since we are interested in spaces with a maximum number of bi-conformal vector fields it
is enough to find the least rank of the above matrix for all possible projectorsPab. We start
first studying the rank ofMAB whose nonvanishing components occur in the following
cases (no summation over the repeated indexes)

p = a, q = b ⇒
{

MA
A = δa

aPbb, a �= b,

MA
A = 2Paa, a = b.

,

p = b, q = a ⇒ M
Q′
A = δb

bPaa, a �= b,
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where we have assumed that we are working in the common (orthonormal) basis of eigen-
vectors ofPa

b andΠa
b so

Pa
b = diag(

p︷ ︸︸ ︷
1 . . . 1 0. . . 0), Πa

b = diag(0. . . 0

n−p︷ ︸︸ ︷
1 . . . 1).

Hence we only need to count how many components of the typeMA
A are different from

zero because by construction these elements give rise to linearly independent rows of the
matrix MA

B (the elementsMA
Q′

are in the same row of the matrixMA
B and they do not

increase its rank becauseQ′ > A). The sought number can be obtained from the following
diagram gathering into blocks theA indexes of the rows containing non-zero elements (we
express each index in terms of tensor indexes following the notationA = (a, b))

Block 1 = {
p︷ ︸︸ ︷

(1, 1) (1, 2) . . . (1, p)} Blockp + 1 = {
p︷ ︸︸ ︷

(p + 1, 1) . . . (p + 1, p)}

Block 2 = {
p−1︷ ︸︸ ︷

(2, 2) (2, 3) . . . (2, p)} Blockp + 2 = {
p︷ ︸︸ ︷

(p + 2, 1) . . . (p + 2, p)}

Block 3 = {
p−2︷ ︸︸ ︷

(3, 3) (3, 4) . . . (3, p)} Blockp + 3 = {
p︷ ︸︸ ︷

(p + 3, 1) . . . (p + 3, p)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Blockp = {
1︷ ︸︸ ︷

(p, p)} Blockp + n = {
p︷ ︸︸ ︷

(n, 1) . . . (n, p)},

from which the rank ofMA
B is

1 + · · · + p + p(n − p) = 1
2p(p + 1) + p(n − p).

Note that this rank only depends on algebraic properties of the projectorPab and not on its
actual form at some concrete space. Addition of the matrices (∇̄P)B′A andPA only increase
the rank of the matrix of the homogeneous system(54)and so we do not need to take them
into account. The total number of constraints posed by(51)-I is then the rank ofMA

B plus
the rank of the matrixNA

B constructed replacingPab by Πab

rank(M) + rank(N) = 1
2p(p + 1) + p(n − p) + 1

2(n − p)(n − p + 1) + p(n − p)

= 1
2n(n + 1) + p(n − p).

Eq.(51)-II. In order to perform the analysis of these constraints it is enough to realize that
the 1-formsφ∗

a andχ∗
a appearing in the right hand side of each equation are invariant under the

projectorsΠa
b andPa

b respectively. Therefore the first equation of(51)-II contains at least
n − p linearly independent equations and the second onep beingn the total sum of them.

The upper boundN is then

N = 2 + n + n + n + n2 − (n + 1
2n(n + 1) + p(n − p))

= 1
2(p + 1)(p + 2) + 1

2(n − p + 1)(n − p + 2). �
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This proof does not guarantee the existence of a Lie algebraG(S) in which the dimension
N is attained. However, it is not difficult to find explicit examples of pseudo-Riemannian
manifold possessingN bi-conformal vector fields.

Proposition 10. The number N is the maximum dimension of G(S) if p, n − p /∈ {1, 2}
being this dimension attained for any pseudo-Riemannian manifold whose line element is
in local coordinates {xa}, a = 1, . . . , n

ds2 = φ2
1(xa)η0

αβ dxα dxβ + φ2
2(xa)η1

AB dxA dxB, (55)

where xα = {x1, . . . , xp}, xA = {xp+1, . . . , xn} are sets of coordinates and η0, η1 flat met-
rics of the appropriate signatures depending only on the coordinates {xα} and {xA} respec-
tively.

Proof. This result is proposition 6.1 of[10]. �
Spaces of previous proposition are calledbi-conformally flat. As stated inDefinition 12

they are a particular case ofconformally separable spaces and we may ask if they are the
only pseudo-Riemannian manifolds admittingN independent bi-conformal vector fields.
The answer to this and other questions such as their geometric characterization can be
settled by calculating the complete integrability conditions of(50). Remarkably this has
been already done but the whole procedure relies on hefty algebraic manipulations so we
have preferred to present these results in a subsequent paper. The interested reader can find
the full details of these calculations in[11].

5. Local geometric characterization of conformally separable
pseudo-Riemannian manifolds

In this section we will show how the bi-conformal connection can be used to derive an in-
variant geometric characterization of conformally separable pseudo-Riemannian manifolds.
To begin with we define in precise terms what a conformally separable pseudo-Riemannian
manifold is.

Definition 11. The pseudo-Riemannian manifold (V, g) is said to be conformally separable
at the pointq ∈ V if there exists a local coordinate chartx ≡ {x1, . . . , xn} based atq in which
the metric tensor takes the form

gab(x) =




Ξ1(x)Gαβ(xγ ), 1 ≤ α, β, γ ≤ p

Ξ2(x)GAB(xC), p + 1 ≤ A, B, C ≤ n

0 otherwise.

(56)

whereΞ1, Ξ2 are C2 functions on the open set defining the coordinate chart. (V, g) is
conformally separable if it is so at every pointp ∈ V . Any of the metric tensorsΞ1Gαβ,
Ξ2GAB shall be called a leaf metric.

Henceforth all our results will deal with conformally separable pseudo-Riemannian man-
ifolds at a point. From now on when working with conformally separable spaces written in
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the form of(56)we adopt the convention that Greek letters label indexes associated to one
of the leaf metrics whereas uppercase Latin characters are used for the other one.

Conformally separable pseudo-Riemannian manifolds are also known asdouble twisted
products. They comprise a number of particular cases which have received wide attention
in the literature under different nomenclatures. A summary of them is presented next.

Definition 12. Let x ≡ {xa}, a = 1 . . . n be the local coordinate system introduced in
Definition 11. A conformally separable manifold can then be classified in terms of the form
that the functionsΞ1, Ξ2 take in these coordinates as

(1) decomposable or reducible: ds2 = Gαβ(xε) dxα dxβ + GAB(xC) dxA dxB,
(2) semi-decomposable, semi-reducible or warped product: ds2 = Gαβ(xε) dxα dxβ +

Ξ(xε)GAB(xC) dxA dxB, Ξ(xε) warping factor,
(3) generalized decomposable or double warped: ds2 = Ξ1(xC)Gαβ(xε) dxα dxβ +

Ξ2(xε)GAB(xC) dxA dxB, Ξ1(xC), Ξ2(xε) warping factors,
(4) twisted product: ds2 = Gαβ(xε) dxα dxβ + Ξ2(xa)GAB(xC) dxA dxB

(5) conformally reducible: ds2 = Ξ(xa)(Gαβ(xε) dxα dxβ + GAB(xC) dxA dxB),
(6) bi-conformally flat: ds2 = Ξ1(xa)ηαβ(xε) dxα dxβ + Ξ2(xa)ηAB(xC) dxA dxB, ηαβ,

ηAB flat metrics of dimensionp andn − p, respectively.

The coordinate system ofDefinitions 11 and 12is fully adapted to the decomposition of
the metric tensor but in general we cannot expect this to be the case. Therefore it would be de-
sirable to have a result characterizing conformally separable pseudo-Riemannian manifolds
or any of the cases presented inDefinition 12in a coordinate-free way. Next we prove an in-
trinsic local characterization valid for a general conformally separable pseudo-Riemannian
manifold which will enable us to derive characterizations for most of the particular cases
described inDefinition 12in a simple way. A lemma is needed first.

Lemma 13. The following assertion is true

Tabc = 0 ⇐⇒ ∇̄aPbc = − 1

p
EaPbc, ∇̄aΠbc = − 1

n − p
WaΠbc. (57)

Proof. First of all, it is convenient to rewrite the conditionTabc = 0 in an appropriate form.
From(16)we have

Mabc = 1

p
EaPbc − 1

n − p
WaΠbc. (58)

Using the definitionMabc = ∇bPac + ∇cPab − ∇aPbc we can isolate∇bPac getting

∇bPac = 1

2p
(EaPbc + EcPab) − 1

2(n − p)
(WaΠbc + WcΠba). (59)

Each(58) and (59)are equivalent toTabc = 0. Next we show the equivalence ofTabc = 0
to the conditions(57). Expanding∇̄aPbc by means of(30)and use of(57)yields

∇bPac = 1

2p
(EaPbc + EcPab) + 1

2
(PcpMp

ba + PapMp
bc) (60)
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∇bΠac = 1

2(n − p)
(WaΠbc + WcΠab) − 1

2
(ΠcpMp

ba + ΠapMp
bc), (61)

which are equivalent to (write∇aPbc, ∇aΠbc in terms ofMabc)

PcpMp
ab = − 1

n − p
WcΠab, ΠcpMp

ab = 1

p
EcPab, (62)

whose addition leads toTabc = 0. Conversely, suppose thatTabc = 0. Then inserting
(58) and (59)into (30)gives us the condition on̄∇aPbc at once. The calculation for̄∇aΠbc

is similar using the identities written in terms ofΠab. �

Theorem 14. A pseudo-Riemannian manifold (V, g) is conformally separable at the point
p ∈ V if and only if there exists an orthogonal projector Pab such that the tensor Tabc formed
with Pab and its complementary Πab = gab − Pab is zero identically in a neighbourhood
of p. In such case Pab and Πab are the leaf metrics of the separation.

Proof. To show that the condition of the theorem is necessary we simply choose the local
coordinates aroundp in which the metric tensor takes the form of(56) and calculate the
tensorTabc as inExample 3. Use of(28) readily implies thatTabc = 0. To prove that the
condition is also sufficient choose an orthonormal co-basis{θ̄1

, . . . , θ̄
n} adapted toPab and

Πab, that is to say, (we use index-free notation and index label splitting as inDefinition 11)

P =
p∑

α=1

εαθ̄
α ⊗ θ̄

α
, � =

n∑
A=p+1

εAθ̄
A ⊗ θ̄

A
,

whereεα, εA = ±1 (the exact value for each indexα, A will depend on the signature of
gab). Now since

∇̄cθ̄
α = −γ̄α

bcθ̄
b = −γ̄α

βcθ̄
β − γ̄α

Bcθ̄
B
,

we have

∇̄cP = −
p∑

α=1

εα[γ̄α
βc(θ̄

β ⊗ θ̄
α + θ̄

α ⊗ θ̄
β) + γ̄α

Bc(θ̄
B ⊗ θ̄

α + θ̄
α ⊗ θ̄

B)],

which by(57)entailsγ̄α
Bc = 0. Similarly condition(57)on� shows that̄γB

αc = 0. These
two conditions upon the connection coefficients imply by means of Frobenius theorem that
the distributions spanned by{θ̄1

, . . . , θ̄
p} and{θ̄p+1

, . . . , θ̄
n} are both integrable. Therefore

in a local coordinate system{x1, . . . , xn} aroundp adapted to the manifolds generated
by these distributions (i.e. in these coordinates the manifolds are given by the conditions
xα = cα, xA = cA) the metric tensor takes the form

ds2 = gαβ(xa) dxα dxβ + gAB(xa) dxA dxB,
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and the tensorsPab andΠab look like

Pab = gαβδα
aδ

β
b, Πab = gABδA

aδ
B

b,

so the non-zero components of the Christoffel symbols are

Γ α
βγ = 1

2gαρ(∂βgγρ + ∂γgρβ − ∂ρgβγ ), Γ α
βA = 1

2gαρ∂Agβρ,

Γ α
BA = − 1

2gαρ∂ρgBA, Γ A
Bα = 1

2gAD∂αgBD, Γ A
αβ = −1

2gAD∂Dgβα,

Γ A
BC = 1

2gAD(∂BgCD + ∂CgDB − ∂DgBC),

where

gαρgρβ = δα
ρ, gADgDB = δA

B.

The only nonvanishing components ofMabc, Ea, Wa are thus

MαAB = ∂αgAB, MAαβ = −∂Agαβ, EA = −∂A log |det(gαβ)|,
Wα = −∂α log |det(gAB)|, (63)

from which we deduce that those ofTabc are

TαAB = ∂αgAB + 1

n − p
gABWα, TAαβ = ∂Agαβ + 1

p
gαβEA, (64)

Thus we are left with the couple of equations(64)equalled to zero. The general solution of
the resulting PDE system is

gαβ = Gαβ(xδ) eΛ1(xa), gAB = GAB(xD) eΛ2(xa),

whereGαβ, GAB, Λ1, Λ2 are arbitrary functions of their respective arguments with no
restrictions other than det(Gαβ) �= 0, det(GAB) �= 0. Comparing these expression with(56)
the result follows. �

Remark 15. A global characterization of conformally separable pseudo-Riemannian man-
ifolds was first given in[23] and is this: a pseudo-Riemannian manifold is conformally
separable iff there exist two orthogonal families of foliations by totally umbilical hyper-
surfaces. The family of first fundamental forms of each hypersurface gives rise to the leaf
metrics of the decomposition of gab in the obvious way (this result was re-derived in[16]).

Theorem 14clearly states the geometric relevance ofTabc as a tool to characterize
conformally separable pseudo-Riemannian manifolds. In fact the conditionTabc = 0 can
be re-written in terms of the factorsΞ1 andΞ2 introduced in the definition of a conformally
separable metric. To that end we use the equivalent condition(59)and replace the 1-forms
Ea, Wa by their expressions given in(63)which can be written as

Ea = −pΠa
r∂r log |Ξ1|, Wa = (p − n)Pa

r∂r log |Ξ2|, (65)
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whence

∇bPac = Pbcua + Pabuc − Pa
rurgbc − Pc

rurgab, (66)

where

ua = Ea

2p
+ Wa

2(n − p)
.

It is not difficult now to characterize intrinsically almost all the subcases presented in
Definition 12.

Theorem 16. Under the hypotheses of Theorem 14 a pseudo-Riemannian manifold (V, g)
is locally

(1) decomposable or reducible if and only if Ea = Wa = 0,
(2) a warped product if and only if Ea = 0 and Wa is an exact 1-form,
(3) a double warped product if and only if both Ea, Wa are exact 1-form,
(4) a twisted product if and only if Ea = 0,
(5) conformally reducible if and only if ua is exact.

In all cases the conditions are understood to hold only in a neighbourhood of a point p.

Proof. To show that the above conditions are necessary we only have to apply formula
(65)case by case and take into account that under the conditions ofTheorem 14

Pa
b =

{
δα

β, a = α, b = β,

0 otherwise.
, Πa

b =
{

δA
B, a = A, b = B

0 otherwise.
,

where the local coordinates of(56)have been set aroundp.

• (V, g) decomposable or reducible⇒ Ξ1 = Ξ2 = 1 ⇒ Ea = Wa = 0.
• (V, g) warped product⇒ Ea = 0, Wa = (p − n)∂a log |Ξ2|.
• (V, g) double warped⇒ Ea = −p∂a log |Ξ1|, Wa = (p − n)∂a log |Ξ2|.
• (V, g) twisted product⇒ Ξ1 = 1 ⇒ Ea = 0.
• (V, g) conformally reducible⇒ Ξ1 = Ξ2 = Ξ ⇒ ua = −∂a log |Ξ|1/2.

The sufficiency follows from simple algebraic manipulations involving the conditions
of each case and the relations

EA = −p
∂AΞ1

Ξ1
, WA = −(n − p)

∂αΞ2

Ξ2
,

coming from(28)which holds due to the propertyTabc = 0.
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• Ea = Wa = 0 ⇒ ∂AΞ1 = ∂αΞ2 = 0 ⇒ Ξ1 = Ξ1(xα), Ξ2 = Ξ2(xA) ⇒ (V, g) is de-
composable or reducible.

• Ea = 0 andWa exact⇒ Ξ1 = Ξ1(xα) and for some scalar functionΦ we have

−(n − p)
∂αΞ2

Ξ2
= ∂αΦ, 0 = ∂AΦ,

which entailsΞ2 = Ξ2(xα) ⇒ (V, g) is a warped product.
• Ea andWa are both exact. A calculation similar to the previous point leads toΞ1 =

Ξ1(xA), Ξ2 = Ξ2(xα) ⇒ (V, g) is double warped.
• Ea = 0 ⇒ Ξ1 = Ξ1(xα) ⇒ (V, g) is a twisted product.
• If ua is exact then for some scalar functionΦ we have

−1
2∂α log |Ξ2| = ∂αΦ, −1

2∂A log |Ξ1| = ∂AΦ

which implies that either (V, g) is a double twisted product (and in particular con-
formally reducible withΞ = Ξ1(xA)Ξ2(xα)) or |Ξ1| = |Ξ2| ⇒ (V, g) is conformally
reducible. �

Local characterizations of some of the cases presented inTheorem 16are already known
and have been rediscovered several times by different procedures. For instance the reducibil-
ity condition is clearly equivalent to∇aPbc = ∇aΠbc = 0 which was proven in[15] in the
context of General Relativity ([25] also proves this result in Riemannian geometry). This
result is known in Riemannian geometry asde Rham decomposition theorem and it was
formulated by de Rham in both local and global terms[6] (the global version was formu-
lated as early as in 1924[2]). A local characterization of Riemannian warped products is
sometimes attributed to Hiepko[13] but in [14] such characterization is already present.
Alternative local characterizations to those ofTheorem 16of double warped products and
certain conformally reducible manifolds were found in[4,3] in the framework of General
Relativity and general conformally reducible Riemannian manifolds were locally charac-
terized in[1]. There are alsoglobal characterizations of the cases discussed inTheorem 16
(see[9] for a summary of them).

In any case our method is more general and simpler than the procedures followed so
far and it covers virtually all possible types of conformally reducible pseudo-Riemannian
manifolds being all of them presented in a single general result (Theorem 16). This makes of
the bi-conformal connection an important tool in the study of conformally separable pseudo-
Riemannian manifolds and we believe that it could play a key role in the research of these
manifolds because it is the natural connection which keeps the decomposition of the metric
tensor in the two leaf metrics defined by the projectorsPab andΠab. An explicit example
of this key role is the local characterization of conformally separable pseudo-Riemannian
manifolds with a conformally flat leaf metric, not covered byTheorem 16. These cases
have never been tackled before and in the companion paper following this publication we
show how the use of the bi-conformal connection allows us to find a local characterization
in the same terms asTheorem 16. The impatient reader may consult all the details in[11]
but just to give a first glimpse we will say that this characterization comes in through the
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vanishing of a four rank tensor involving the curvature tensor of the bi-conformal connection
(in a sense it resembles the local characterization of conformally flat pseudo-Riemannian
manifolds by means of the vanishing of the Weyl tensor). More examples showing explicitly
the usefulness of our techniques are supplied in next section.

6. Examples

Example 17. As our first example we consider the four dimensional pseudo-Riemannian
manifold with metric given by

ds2 = (Ψ2 sin2 θ − α2) dt2 + 2Ψ2 sin2 θ dφ dt + B2(dr2 + r2 dθ2) + Φ2 sin2 θ dφ2,

where the coordinate ranges are−∞ < t < ∞, 0 < r < ∞, 0 < θ < π, 0 < θ < 2π and
the functionsΨ , α, B andΦ only depend on the coordinatesr, θ. We will try to find out
the conditions under which the metric is conformally separable with the hypersurfaces
t = const as one of the leaves. A simple calculation shows that the projectorPa

b projecting
vectors onto the distribution generated by the above hypersurfaces is (now and henceforth
all the components omitted in an explicit tensor representation are understood to be zero)

Pr
r = Pθ

θ = Pφ
φ = 1, Pφ

t = Ψ2

Φ2 ,

which entails

Ptt = Ψ4

Φ2 sin2 θ, Prr = B2, Pθθ = r2B2,

Pφφ = Φ2 sin2 θ, Ptφ = Ψ2 sin2 θ.

From here we can calculate the components of the tensorTabc and set them equal to zero.
After doing this we find the following independent conditions (letter subscripts mean
partial derivatives)

−ΨΦr + ΨrΦ = 0, −ΨΦθ + ΨθΦ = 0,

which are fulfilled if and only if

|Φ| = |Ψ |

Under these conditions the metric takes the form

ds2 = Ψ2 sin2 θ(dt + dφ)2 − α2 dt2 + B2(dr2 + r2 dθ2).

This metric is not written in the form of(56) and so it is not evident that it is conformally
separable with the hypersurfacest = const as the leaves. This is so because the remaining
coordinatesr, θ, φ are not adapted to the separation and so a coordinate change would be
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necessary to bring the above metric into the form(56). An advantage of our technique is that
we do not need to find this coordinate change and only by prescribing one of the leaves of
the separation have we been able to determine easily that our pseudo-Riemannian manifold
is conformally separable. In this particular example we can even go further and calculate the
1-formsEa andWa. In this way we obtain thatEa = 0 whereasWa is closed (locally exact)
soTheorem 16says that this pseudo-Riemannian manifold is locally a warped product.

Example 18. In the foregoing results we have only concentrated on conformally separable
pseudo-Riemannian manifolds but nothing was said about manifolds withconformal slices
and not conformally separable. To illustrate this case let us consider the four dimensional
pseudo-Riemannian manifold given in local coordinates{x1, x2, x3, x4} by

ds2 = Φ(x)[Ξ1(x1, x2, x3)(dx1)2 + Ξ2(x1, x2, x3)(dx2)2 + Ξ3(x1, x2, x3)(dx3)2]

+ 2
3∑

i=1

βi(x)dxi dx4 + Ψ (x)(dx4)2, (67)

wherex = {x1, x2, x3, x4} andΦ(x), βi(x), Ψ (x), {Ξi(x1, x2, x3)}i=1,2,3 are functions at
leastC2 in an open domain. The above line element is the most general four dimensional
metric admitting a local foliation by three dimensional conformal hypersurfaces (here these
are given by the conditionx4 = const) because according to a classical result any three
dimensional metric tensor can be written as the bracket term multiplyingΦ(x) in Eq.(67).

The non-zero components of the orthogonal projectorPa
b associated to the foliation

x4 = const (see previous example) are

P1
1 = P2

2 = P3
3 = 1, Pi

4 = βi(x)

Φ(x)Ξi(x1, x2, x3)
, i = 1, 2, 3, (68)

from which we easily get

P11 = P22 = P33 = Φ(x), Pi4 = βi(x), i = 1, 2, 3,

P44 =
3∑

i=1

β2
i (x)

Φ(x)Ξi(x1, x2, x3)
.

Using this we can check the conditionTabc = 0 and find out what is obtained. This is a
rather long calculation which is easily performed with any of the computer algebra systems
available today (the system used here was GRTensorII). The result is that the tensorTabc

does not vanish in this case although a calculation using(68)shows the important property

Pr
aP

s
bP

q
cTrsq = 0. (69)

Theorem 19. A necessary condition that a four dimensional pseudo-Riemannian manifold
can be foliated by conformal hypersurfaces with associated orthogonal projector Pab is Eq.
(69).

This result suggests that it may well be possible to generalize conditions ofTheorem
14 to metrics of arbitrary dimension which are not conformally separable replacing these
conditions by(69). The true extent of this assertion is under current research.
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We wish to thank Jośe M.M. Senovilla for a careful reading of the manuscript and
his many suggested improvements. Financial support from projects 9/UPV00172.310-
14456/2002 and BFM 2000-0018 is also gratefully acknowledged. Finally we thank an
anonymous referee for his valuable comments.

Appendix A. Basic identities involving the Lie derivative

In this appendix we recall some properties of the Lie derivative needed in the main
text. Despite their basic character, they are hardly presented in basic Differential Geometry
textbooks and the author is only aware of[24,18]as the only references in which they are
studied.

Proposition A.1. For any symmetric connection ∇̄ defined in a differentiable manifold V,
any vector field �ξ at least C2 and a tensor field T

a1...ap

b1...bq
∈ Tp

q(V ) we have the following
identities

£�ξ γ̄a
bc = ∇̄b∇̄cξ

a + ξdR̄a
cdb, (A.1)

∇̄c £�ξ T
a1...as

b1...bq
− £�ξ ∇̄cT

a1...as

b1...bq
= −

s∑
j=1

(£�ξ γ̄aj
cr)T

...aj−1raj+1...

b1...bq

+
q∑

j=1

(£�ξ γ̄ r
cbj

)T a1...as

...bj−1rbj+1...
, (A.2)

£�ξ R̄d
cab = ∇̄a(£�ξ γ̄d

bc) − ∇̄b(£�ξ γ̄d
ac), (A.3)

whereγ̄a
bc are the components of the connection∇̄ andR̄a

bcd its curvature (these identities
are calculated under the convention(4) for the curvature tensor). Furthermore if a metric
tensor gab is set inV and∇ is now the metric connection associated to it then

£�ξ γa
bc = 1

2gae[∇b(£�ξ gce) + ∇c(£�ξ gbe) − ∇e(£�ξ gbc)]. (A.4)

Remark A.2. The Lie derivative of the connection is a tensor even thoughγa
bc is not. To

see this we denote by{Φs} the one-parameter group of local diffeomorphisms generated by
the vector field�ξ and by (Φ∗

s γ)abc the transformed of the connection underΦs which in the
local coordinatesx = {x1, . . . , xn} is calculated by means of the formula

(Φ∗
sΓ )abc(x) = ∂Φa−s

∂xr

∂Φz
s

∂xb

∂Φq
s

∂xc
Γ r

zq(Φs(x)) + ∂Φa−s

∂xr

∂

∂xb

(
∂Φr

s

∂xc

)
.
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Hence neither (Φ∗
s γ)abc norγa

bc are tensors but the difference (Φ∗
s γ)abc − γa

bc is a tensor
and this implies that

lim
s→0

(Φ∗
s γ)abc − γa

bc

s

is also a tensor which is the Lie derivative of the connection.
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