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Abstract

This is the first of two companion papers in which a thorough study of the normal form and the first
integrability conditions arising fromhi-conformal vector fields is presented. These new symmetry
transformations were introduced @lass. Quantum Grav. 21, 2153-2177 and some of their basic
properties were addressed there. Bi-conformal vector fields are defined on a pseudo-Riemannian
manifold V through the differential conditiong: £, = ¢P, and % ., = xI1, whereP,, andIT,,
are orthogonal and complementary projectors with respect to the metric tgndarayr calculations
a new affine connectiorb{-conformal connection) arises quite naturally and this connection enables
us to find a local characterization ebnformally separable pseudo-Riemannian manifolds (also
called double twisted products) in terms of the vanishing of a rank three t@&pso6imilar local
characterizations are found for the most important particular cases such as (double) warped products,
twisted products and conformally reducible spaces.
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1. Introduction

The research of symmetry transformations in Differential Geometry and General Relativ-
ity has been an important subject during the years. Here by symmetries we mean a group of
transformations of a given pseudo-Riemannian manifold complying with certain geometric
property. By far the most studied symmetries are isometries and conformal transformations
which are defined through the conditions

EE O = 0, EE Qap = 2¢gab’ (1)

where g, is the metric tensor of the manifoléjs theinfinitesimal generator of the trans-
formation andp is a function which we will calgauge of the symmetry (this terminology

was first employed iffi5] and it will be explained later). Infinitesimal generators of these
symmetries are known as Killing vectors and conformal Killing vectors, respectively. As

is very simple to check they are a Lie algebra with respect to the Lie bracket of vector
fields and the transformations generated by these vector fields give rise to subgroups of the
diffeomorphism group.

Important questions are the possible dimensions of these Lie algebras and the geometric
characterizations of spaces admitting the symmetry. The general answer to these questions
can in principle be obtained by solving the differential conditions written above although
for general enough cases the explicit evaluation of such solutions gets too complex and
other methods are required. Notwithstanding these difficulties, we can obtain easily from
the differential conditions the cases in which the Lie algebras are finite dimensional, the
greatest dimension of these Lie algebras and geometric characterizations of the spaces
admitting these Lie algebras as solutions. This is done by findingdheal form of the
above equations (if such form exists) and the complete integrability conditions coming from
this set of equations. In this way we deduce that isometries are always finite dimensional
whereas conformal motions are finite dimensional iff the space dimension is greater or equal
than three. The spaces in which the greatest dimension is achieved are constant curvature
and conformally flat spaces, respectively and as is very well known they are characterized
by the geometric conditions

R
Rped = —=(80py — 8°49),.) (constant curvature)

n(n —1)

C%cq = 0, n > 3 (conformally flat)

wheren is the dimension of the manifol®?;., is the curvature tensak the scalar curvature
andC%,, the Weyl tensor

The procedure followed for isometries and conformal motions is carried over to other
symmetries such as linear and affine collineations and conformal collineatiof24sE2]
for a very good account of this). However, little research has been done for symmetries
different from these mostly because the cases under consideration were infinite dimensional
generically. This means that it is not possible to obtain a normal set of equations out of the

1 In the case of dimension three manifolds the Weyl tensor is replaced by a three-rank tensor called the Cotton-
York (or Schouten) tensor.
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differential conditions (see Sectia) which greatly complicates matters. Mathematicians
have developed an alternative view toward this issue in the thed@@ysofuctures (see e.g.
[17] for a thorough description of this).

In referencd10] we put forward a new symmetry transformation for general pseudo-
Riemannian manifolds. Infinitesimal generators of these symmetries (bi-conformal vector
fields) fulfill the differential conditions

EE Py = ¢Pab9 £ﬂ ab = Xnaba (2)

where P,, and I1,, are orthogonal and complementary projectors with respect to the
metric tensor g, and¢, x are the gauges of the symmetry. These are functions which, as
happened in the conformal case, depend on the vecto@fmjda solution of?2) is formed

byg itself and the gaugesandy (we will usually omit the dependence enn the gauges).

The finite transformations generated by bi-conformal vector fields are called bi-conformal
transformations. In a sense, these symmetries can be regarded as conformal transformations
with respect to bottP,;, and I1,, so we can expect that some properties of bi-conformal
vector fields will resemble those of conformal transformationgl@jit was shown that bi-
conformal vector fields comprise a Lie algebra under the Lie bracket and that this algebra is
finite dimensional if none of the projectors has algebraic rank one or two being the greatest
dimension

N=3p(p+1)+ 50— p)n— p+1),

with p the algebraic rank of one of the projectors. We provided also explicit examples
in which this dimension is achieved, namely bi-conformally flat spaces which in local
coordinatesc = {x%, ..., x"} look like (0, f=1,..., p;A,B=p+1,...,n)

ds? = E1(xX)nep I dx? + Ep(x)papded dxB,  E1, 52 € C3, ©)

wheren,g, nap are flat metrics depending only on the coordinatéandx” respectively.
That these spaces play the same role for bi-conformal vector fields as conformally flat
spaces or spaces of constant curvature do for the classical symmetries will be a result
of the analysis started in this paper. One can also find a geometric characterization
for bi-conformally flat spaces similar to those of the spaces of constant curvature or
conformally flat spaces stated in (2) (full details of this are contained if). In the
scheme developed i[10] this sort of characterization could not be extracted due to the
complexity of the calculations and it had to be postponed.

In this paper we perform the full calculation of the normal form for &). This nor-
mal form is already present in our previous work but it turned out to be rather messy
and relevant geometric information could not be obtained. This was so because all these
calculations were done using the covariant derivatives arising from the metric connec-
tion which is not adapted to the calculations. Here we show that the definition of a new
symmetric connectionb(-conformal connection) greatly simplifies the calculations mak-
ing it possible to get a simpler form for the normal system. Due to the great amount of
algebra required to work out the complete integrability conditions associated to the nor-
mal form we have placed its analysis together with the geometric characterization of the
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maximal spaces in a subsequent paper (a complete version of all our results can be found
in [11]).

The bi-conformal connection bears an interesting geometric interpretation if we work on
conformally separable pseudo-Riemannian manifolds. These are defined as those manifolds
which in a local coordinate system the metric tensor takes the form (the conventions are the
same as irf3))

ds? = E1(x)gap dx* dx? + Z2(x)G ap dx” dx?,

wheregqs and G 43 only depend on the coordinates labelled by their index components.
The bi-conformal connection is naturally adapted to this decomposition and its use permits
us to give a new simple geometric characterization of these spaces in terms of the vanishing
of a certain rank-three tensdi,,.. The most known cases of conformally separable
pseudo-Riemannian manifolds are warped products, double warped products, twisted
products and conformally reducible spaces (3eénition 12for a precise account of each
case) and we can easily derive with our techniques local geometric characterizations for
these spacegtieorem 15

The outline of the paper is as follows: Sect@imtroduces the basic notation and defi-
nitions. In Sectior we define a new symmetric connection (bi-conformal connection) and
we set its main properties. Sectidpresents the calculation of the normal form associated
to (2) and the calculation of the maximum dimension of any finite dimensional Lie algebra
of bi-conformal vector fields is carried out. In Sectlwe use the bi-conformal connection
to supply a local geometric characterization of conformally separable pseudo-Riemannian
manifolds and their principal subcases. Finally in Sec@ame show in explicit examples
how to use this geometric characterization and we hint how these conditions may be ex-
tended to more general pseudo-Riemannian manif8ioisendix Acollects basic identities
relating the Lie derivative and the covariant derivative.

2. Bi-conformal vector fields and bi-conformal transformations

Let us start by setting our notation and conventions for the paper. We work on a differen-
tiable manifoldV in which aC* metric g,, of arbitrary signature has been defined (pseudo-
Riemannian manifold). Vectors and vector fields are denoted with arrowed characters
v (we leave to the context the distinction between each of these entities) when expressed
in coordinate-free notation whereas 1-forms are written in bold charact&smetimes
this same notation will be employed for other higher rank objects such as contravariant
and covariant tensors. Indexes of tensors are represented by lowercase Latin chgracters
b, ... and the metric g, or its inverse ¢ are used to respectively raise or lower indexes.
Rounded and square brackets are used for symmetrization and antisymmetrization, respec-
tively and whenever a group of indexes is enclosed between strokes they are excluded from
the symmetrization or antisymmetrization operation. Partial derivatives with respect to lo-
cal coordinates aré, = d/9x“. The Levi-Civita connection associated {g & y“5. (Ricci
rotation coefficients) reserving the symhdt,. only for the Christoffel symbols, namely,
the connection components in a natural basis. The covariant derivative and the Riemann
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tensor constructed from this connection are denoted bynd R%,,.; respectively being our
convention for the Riemann tensor

Repea = 0T gy — 0al " cp + T eI ap — T'al” cp. (4)

Under this convention the Ricci identity becomes
VpVeu" = Ve Vpu® = R peut’, VipVeta — VeVpitag = =R apeity.

All the above relations are still valid for a non-metric symmetric connection.

The set of smooth vector fields of the manifédds denoted byk (V). This is an infinite
dimensional Lie algebra which is sometimes regarded as the Lie algebra of the group of
diffeomorphisms of the manifold. Finally the Lie derivative operator with respect to a
vector field¢ is %

One of the main subjects of this paper is the study of bi-conformal vector fields whose
definition given in[10] we reproduce here.

Definition 1. A smooth vector field} onV is said to be &i-conformal vector field if it
fulfills the condition
EE Pup = ¢Pup, £§ Iy = xgp, (5)
for some functiong, x € C°(V).
P,, and I1,, are smooth sections of the tensor bunﬂﬁk{v) such that at each point

x € V they form a pair of orthogonal and complementary projectors with respect to the
metric tensor g, |,. This leads to

Pah = Ppg, Hah = Hhaa Pop + Iy, = Oup> PapPph = Py,
Ha,,HPb = Iy, Pa,,Hpb =0.

Eq. (5) can be re-written in a number of equivalent ways as shown next. To that end we
define the tensas,;, in terms of the projector®,, andI1,, by

Sab = Pap — yp = Pyp = %(gab + Sab)y
Hab = %(gab - Sab) = SupSpb = 0up- (6)

The last property of this set means ti$g} is a square root of the metric tensor. It is not
difficult to prove that the endomorphissf;, can be always diagonalized and the only
possible eigenvalues a#el and—1 being the associated eigenspaces the subspaces upon
which the projectors®?;, and I7T%; project. Other interesting point is that a square root is
always thesuperenergy of a simple form (se§l0] for further details).

In terms of the square rodt,;, the conditiong5) take the equivalent form

E’E 9. = @0, + BSab, EE Sap = aSap + ﬂgabv
a=3o+x., B=3¢—0. ©)
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From Eq.(6) we deduce that both projectors are fixed by the squareSggato we can use
the latter instead of the projectors when working with a given set of bi-conformal vector
fields. Following[10] the set of bi-conformal vector fields possessipgas the associated
square root will be denoted l§y(S). In this paper only expressions involviiy, and 7,
will be used in our calculations. A very important propertydf) is that it forms a Lie
subalgebra oft(V) (proposition 5.2 0f10]) which can be finite or infinite dimensional.
Conditions upon the tensdt,, (or equivalently the projectors) for this Lie algebra to be
finite dimensional were given if10] and they will be re-derived in Sectighin a more
efficient way. Observe that the functiopsand x appearing irDefinition 1 (or « andg) do
depend on the bi-conformal vector figddthis dependence can be dropped if we work with
a single bi-conformal vector field but it should be added when working with Lie algebras of
bi-conformal vector fields). In the latter cagend x (¢ andg) are calledeauge functions
(see[5] for an explanation of this terminology).

The next set of relations comes straight away fi&n

£ PYy=£; 1% =0, £ P% = —¢pp, £ o = — . (8)

Here the last pair of equations are equivalen&o

3. The bi-conformal connection

As we have commented in the introduction the Levi-Civita connegtignis not suitable
to study the normal form and the integrability conditions coming from the differential
condition(5) as they result in rather cumbersome expressions. In order to proceed further
in our study we are going to show next that the definition of a new symmetric connection
greatly simplifies the normal form calculated[&0] and what is more, it will enable us to
work out thoroughly the complete integrability conditions arising from this normal form in
a subsequent work. .

To start with we recall some identities satisfied by any bi-conformal vectoréiettich
were obtained ifil0]. These identities are in fact linear combinations of the first covariant
derivative of(5) and we also indicate briefly how they are obtained as this information will
be needed later. Using E@\.4) we easily obtain the Lie derivative of the metric connection

Ybe (b = 3, Xb = b X)
£ Vhe = 3(@0 P+ b Ph— " Poc+ xo T+ Xe T — XMy + (¢ — X)Msc), (9)
where the tensa¥ . is defined by
Mape = Vi Pac + Ve Pap — Va Ppc. (10)
The Lie derivative of\,;. can be worked out by means @.2) getting
£ Mape = ¢Mape + (X — ) PapMP e — PocIlapd® + ey Papx”

= xMapc + (¢ - X)napMpbc - Phcnap¢p + Hchpapoa (11)
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from which, projecting down withP*¢ and I7*¢, we deduce
EE E,= _pnap¢ps EE Wo=(p— I’l)Papo, (12)

with the definitions
E, = MachCb’ a=— achCba pP= PY,.

The following algebraic properties of the tensétsand W, are useful
,.E€ = E,, PucWE = Wy, 0= PPE, = IW,. (13)
Now, we substitut€12) into (11) yielding

1 1 Ey Py
EE (Macb - ;Eapbc + n_pWchb> =¢ (HdpMpcb - c)

p
chWa
n—p)’

+ X (PapMpbc+ (14)

This equation can be written in a more compact form
EE Tape = (¢Har + XPar)Trbc = ¢Babc + XAabc» (15)

where the definitions of the tensdfs,., Aupe, Bape are

1 1
Tabe = Mape + —— Wollpe — — Eq Ppe, (16)
n—p p
d d 1
Aape = Py Tape = Py Myep + mWchba (17)
d d 1
Bape = 11" Tape = 1" Macp — ;EaPch- (18)

Using Eq.(15) we can calculate the Lie derivatives 4f,. and B,
EE Aabc = (X - ¢)Aah0a EE Bahc = (¢ - X)Bahc» (19)

a relation which shall be used later.

Let us now use all this information to write the Lie derivative of the connection in a
convenient way. Note thatin E(L1) ¢, andy, appear projected witk“; andIT%;, respec-
tively suggesting that it could be interesting to write any derivativ¢ afdy decomposed
in transverse and longitudinal parts

¢: = Habd)bs (Za = Pab¢bv X:: = absz )?a = Habxb~ (20)
If we perform this decomposition in E¢Q) and replace the ternys; and x’ by means of
(12) we get the relation

1 1
£ (Vabc+ ?(Eb Pl +E P'y— Py E)+ ———
D 2

oy VoI Wl = W“ncb))

1 - — — _ _ _ 1
= §(¢bpac+¢cpab_(banc"‘anac"‘chab_Xancb) + E(d’ - X)Tabw (21)
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but from(19), (17) and (18yve easily deduce
EE (Aabc - Babc) =(x— ¢)Tabc,

hence Eq(21) becomes, after some simplifications

1 1
2 & (%t —(Eyp P + EoPy)+ ———— (W [T+ W.IT%) + = (P*, — I1°,)M"..
£ (V b4+2p( pPlet+ EcPY)t5 (WpIT%c+ o)+ 5 (P ») h)

(n — p)
= ¢p P+ G Py — ¢ Puy + XpI1% + X IT% — XM, (22)

The geometric object inside the Lie derivative, denotedty, is the sum of the metric
connectiony?;. plus the rank-3 tensor
1 1 1
Labc = 7(EbPac + EcPab) + 7(anac + chab)+ 7(Pap - Hap)Mprv
2p 2(n — p) 2
(23)

soitis clear thatit represents a new linear connection. As we will see during our calculations
thislinear connection is fully adapted to the calculations involving bi-conformal vector fields
and it will be extensively used in this paper.

Definition 2 (Bi-conformal connection). The connection whose components are given
by ¥4 is called bi-conformal connection. The covariant derivative constructed from the
bi-conformal connection shall be denoted¥Wyand the curvature tensor constructed from
itby R%q.

SinceL?,. is symmetric in the indexelsc, we see that the bi-conformal connection is
symmetric so it has no torsion and all the identities involving only the covariant derivative
V or the curvatureR?;.; remain the same as for the case of a metric connection. However,
this connection does not in general stem from a metric tensor as can be seen in explicit
examples. This means that certain properties of the curvature tensor of a metric connection
are not true foR?,.;. We recall that for a symmetric connection the Riemann tensor is only
antisymmetric in the last pair of indexes.

Connections defined in terms &f,;,, I1,, and their covariant derivatives as {B3)
have been already considered in the literature in relation with the study of integrable
and parallel distributions [19-22] (see also[17]). A distribution can be univocally
fixed by means of two orthogonal and complementary projecl®gs 171, and so the
study of these projectors can give us information about the geometric properties of the
distribution.

It is not very difficult to derive an identity relating the curvature tensor calculated
from the bi-conformal connection and the curvature tensor associated to the connection
Vabc

R%ped = R%ea + 2VcL%ap + 2L (o L app, (24)
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this being a thoroughly general identity for two symmetric connectighs and 3%,
differing in a tensod %, ([18], p. 141). _
The relation between the covariant derivati¥eandV acting on any tensza,l,‘l'f,’;q is

r
o val.--ar __ aj...ay a, ajp...dg—1Cdsq1...ay
Vo X4 b, = VaX 4 b, +) L%cX by...b,

s=1

q

c ai...dy
- Z L ap X by...bg_1cbsy1...by’ (25)
s=1

which again has general validity for two symmetric connections whose difference is a tensor
L%, [7]. As afirst application of this identity we may compare the covariant derivatives of
the tensot.?,. which leads us to the identity

6[aLbc]d = V[aLhc]d + 2Lbr[ach]da

from which we can rewrit¢€24) in terms ofv
R%cq = Rpea — 2V L% g + 2L% 1L i (26)
Of course this last equation could have been obtained(2diyby means of the replacements

R%cq < Rca, Le — —L%c andV, — V,.

Example 3. Torealize the importance of the bi-conformal connection in future calculations,
let us calculate its components forenformally separable pseudo-Riemannian manifold
(seeDefinition 11) given in local coordinates = {x1, ..., x"} by

ds? = E1(xh, .. W) Gl dx¥ dn? + Eo(xt, . X)G ARG X kB (27)

Here Greek indexes range from 1p@nd uppercase Latin indexes frgmt+ 1 ton so the

metric tensorsG,g and G 4 p are of rankp andn — p respectively. The tensoG* and

G458 are defined in the obvious way and they are used to raise Greek and uppercase Latin
indexes respectively. The non-zero Christoffel symbols for this metric are

1
g, = ﬁGap(Bﬂ(ElGap) + 0,(81Gpp) — 3,(E1Ggy)),

1
rpe = == G*P(35(E1Gcp) + 3c(E1G pg) — 3p(E1G Be)),

251
1 1
s = Tl(saﬁaAEl» Mg, = 2:25A33“52’

from which the only nonvanishing componentsidf;., E,, W, are
Myap = 3.(E2GaB), Mpgg = —04(E81Gap),
Ex = — 34 log|detE1Gap)l, Wo = —0 log|detE2G 43)|. (28)

Therefore we get for the components of the bi-conformal connection
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1
Fa/gd, = 2—&(50[/33(1,51 + 8a¢3ﬂ31 - GapGﬂ¢8pE1) + Fa/g¢(G),

1
IMpe = E(SABaCEZ +84capE2 — GARG pcdrE2) + I' pe(G),

FaﬁC:FAB¢=O, (29)

where ™ 4(G) and I'* gc(G) are the Christoffel symbols of the metrick,s and G 45,
respectively. From the above formulae we deduce that the bi-conformal connection is fully
adapted to a conformally separable pseudo-Riemannian manifold because its components
clearly splitin two parts being each of them the Christoffel symbols of the me&igsG 4 p

plus terms involving the derivatives of the fact@&sandZ». We will take advantage of this
property in Sectiob where we will find an invariant local characterization of conformally
separable pseudo-Riemannian manifolds.

We calculate next the covariant derivative with respect to the bi-conformal connection
of a number of tensors.

Proposition 4. The following identities hold true

— 1 1 1 » »
VaPpe = Vg Ppe — ;EaPhc - Z(Ebpac + EcPab) - E(PCpM ab + PbpM ac)a

(30)
2V, P’ = 2V, Pt 4+ PP P" My — TP P" My — P° My,
1 1
+ W T, — =E.P’,, (31)
n—p p
= e 1 : 1 : :
VP’ = VP + ;Ean‘ 37 p)(W‘Hba +WhITe,) —
1
- E(Mbarprc + Mcarprb)a (32)

and all the identities formed with the replacements Py, — Iz, p — n — p.

Proof. All these identities are proven by meang®5) and the use of properti¢$3). O

Using the above properties we can get more interesting identities to be used later on.

VP =v,1% = V,P%, = V,IIf =0, (33)
PPV, Py = —E,, Py VP = E,, (34)
17V, My, = —W,, MV I = W, (35)

Pd,@H’d = Hdrngrd = Pdrgdprb = Hdr%r[,b =0. (36)



A.G.-P. Gomez-Lobo / Journal of Geometry and Physics 56 (2006) 1069—1095 1079

Note that index raising and lowering do not commute vﬁtlsgwe must be very careful
when we raise or lower indexes in tensor expressions involving

4. Normal form and dimension of maximal Lie algebras of bi-conformal fields

We turn now our attention to the calculation of the full normal form coming from the
differential conditiong5). A detailed explanation of the general procedure and relevance of
this calculation for a general symmetry can be founfBid0] (see alsg24] for the calcu-
lation in the cases of the most studied symmetries in General Relativity such as isometries
and conformal motions). Before starting the calculation and for the sake of completeness
let us give a very brief sketch of the whole procedure. We must differentiate the condition
(5) a number of times in such a way that we get enough equations to isolate the derivatives
of certain variables (system variables) in terms of themselves (this is achieved typically
by means of the resolution of a linear system of equations). The so obtained derivatives
give rise to the normal form associated to our symmetry. Along the differentiating process
one may obtain equations whose linear combinations no longer contain derivatives of the
system variables (constraints). Examples of such constraints in our case are the differential
conditions themselves aifii2) (actually these are the only constraints as we will show in
Sectiord.2).

It is possible to meet cases in which the normal form cannot be achieved. This means
that one cannot obtain enough equations to isolate all the derivatives obtained through the
derivation process. The main implication of this is that the Lie algebra of vector fields
fulfilling the starting differential condition is infinite dimensional as opposed to the case
in which there is such a normal form. Therefore the calculation of the normal form allows
us to tell apart the cases with an infinite dimensional Lie algebra of vector fields from
those representing finite dimensional Lie algebras. In the latter case we can even go further
and determine the highest dimension of these Lie algebras as the total number of system
variables minus the number of linearly independent constraints.

We start out our calculation with the substitution(22) into (A.1) which yields

6b‘ljwc + sdﬁacdb = %(‘;bpac + (;cPab - (;aPcb + )?bnac + )?cnab - )?a cb)y
Wa=VE. (37)
Next we replace itfA.3) the Lie derivatives of the bi-conformal connection by their expres-
sions given by22) getting
EE ﬁdcab = g[a(gb] Pdc + Pd[bga]q;c - c[bga]q;d + 6[a)?b] Hdc + Hd[bga] )?c
- Hc[bga] )?d + q;[bga] Pdc + djcg[apdb] - adg[a Pb]c + )?[bga] ndc
+ )?cg[andb] - )?dg[anb]c- (38)

The game is now to isolate from this expressﬁn;b and%)?b (these rank-2 tensors are
not symmetric in general). The forthcoming calculations split in two groups which are dual
under the interchang®,, < I, p < n — p (only the calculations of the first group are
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shown). Multiplying(38) by P¢, we obtain
E’E (PdrErcab) = Pdcg[aab] + Pd[bga]q;c - PdrPc[bga]ar - Pdrnc[bga])_(r
+ Pdr(;[hga] P+ ‘;L’Pdrg[aprh] - (Edg[apb]c
+ Pdr)?[bga]nrc + ZcPdrg[aHrh]- (39)
Contraction of the indexasc in the above expression yields
_ _ _ 2 _
Vads = Vo + = £ (PR aan), (40)
while the contraction of indexeta and use of identitie€33)-(36)entails
2 & (PR cap) = P Vadpp + P uVade — ¢V, Poc — Vad® Poc — pVpge.  (41)

Egs.(40) and (41xan now be combined in a single expression which is
d pr 1 d pr pq d pr pq r pq
ZEE PR cdb_;(P cP qR rdb+P bP qR rdc_PqR rbc)

= (2= P)Vbbe — Vad" Poc — da(Vo P!c + Ve Py + PV, Pyc). (42)
Multiplying here with P leads, after a little bit of algebra, to

_ 1 — — — — .
V60 = fp(EE RO+¢R%, p#1 RO= PR PP, (43)

On the other han{42) can be further simplified if we take into account the identity
— — — 1
Vo P+ VPl = PN Poe = TN, Poe + ST Moy + T, Mre)
+ o (WeIT) + Wy IT,),
2(n — p)

which is easily derived by writing all the covariant derivatives with respect to the
bi-conformal connection of the projectors in terms of ordinary covariant derivatives

(Proposition 4. So plugging43)into (42) we get

(2 - p)€b¢_’c =£§ Lobc + Zq?rgrpbc» (44)
where
0 d pi 1 d D d D D R°
L°pe=2|P rchdb_;(P cPquqrdb + P bPquqrdc - Pquqrbc) +1_ prc-
(45)

The duals 0f44) and (45gre
(2 —n+ p)gbic :£g lec + Zirgrnbc, (46)
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and

_ 1 — — —
lec =2 Hdrchdb_ﬁ(ndcnquqrdh + Hdbnquqrdc - Hquqrbc)
R = -
+———— 1., R'= HdrchdeCb~ (47)
l-n+p

To complete the normal form we need now the derivatives;aind x* which are obtained
through the differentiation afL2) (identity (A.2) must be used to get these derivatives)

—pVbds =€ (VoEa) + 50 Ea + XaEb — (X E) ), (48)

(P — 1)V =£5 (Vs Wa) + 3(66Wa + $aWs — (6" W,) Pup) (49)
4.1. Normal form of the differential conditions

The above calculations give us the sought normal form for the differential condi&pns
being these gathered in the following set of equations

Vb = Ga+ &5 Vax = Xa+ X @)
Vit = 5 & (VoE) + 3G0Ea + s — (0 EN)] (b)
Vi = 755 B (VW) + 3@ Wa + W — @' W)P)] ©
Vibe = 75185 LY. + 267V, Pul. (@ ©0
ViXe = ﬁﬂ,[ﬁg L}, + 250V, ], (e)
Vit = W,a, )

gb%a = %(@;P"c + ¢ Py — ¢ Pup + XpIT% + X AT — XM ) — £ R%cap. (Q)

Afirst glance at these equations reveals us that this normal form does not always exist. To
be precise if eithep = 2 or p = n — 2 the derivative$/,¢, andV, x; cannot be isolated
and the system cannot be “closed” (in fact these derivatives cannot be isolated even if
we perform further derivatives of any of the above equations). We must also remember
at this point that the tensois?, and L1, are well-defined unlesp =1 andp =n — 1
respectively (see Eq$45) and (47). Therefore we have proven the following theorem
(compare to Proposition 6.2 §f0])

Theorem 5. The only cases in which the Lie algebra G(S) can be infinite dimensional occur
ifandonlyif p=1,p=2,p=n—-1,p=n—-2.

The result of this theorem is intuitively clear if we realize that bi-conformal vector fields
are somehow conformal motions for the projectBss andI1,,. Therefore if any of them
projects onto one or two dimensional vector spaces the associated Lie algebras may turn
out to be infinite dimensional as we have just found.
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Egs.(50)are no longer a normal form system if some of the derivatives involved vanish.
This happens for instance if part of the gauge functions are constants or their second covariant
derivatives with respect to the bi-conformal connection are zero. In all this work we will
assume that these derivatives are not zero in an open neighbourhood of a point leaving the
study of any other cases for a forthcoming publication.

The normal form can be used to establish the minimum conditions under which bi-
conformal vector fields are smooth vector fields.

Proposition 6. Let E be a bi-conformal vector field at least C? in a neighbourhood U, of
a point x belonging to a manifold V with a C* metric tensor. If ¢, x are at least C? on U,
then & € C*°(Uy).

Proof. To prove this result it is enough to show that the covariant derivativésmjfh
respect to the bi-conformal connection exist at any order. The first and second derivatives
of § are Eqs(50)f and(50)-g and higher derivatives are calculated from this last equation.
When we derivg50)-g we needV,¢. andV, x. which exist onif, as¢, x eﬁCE(ux) and

these are obtained through E§0)-d and(50)-e in which only derivatives of, ¢, and x,

of order less or equal than one appear. This makes clear that no other equ&iopboft

the ones mentioned so far are involved in the calculation of the derlvatl\l;aartﬂ so we

can obtain them in as high order as we wisll

Related to this is the following result (the technique used in the proof has been employed
in [12] for other symmetries in the framework of General Relativity).

Proposition 7. Under the hypotheses of previous proposition if a bi-conformal vector field
& is such that £*|, = 0, Vp&?, = 0, V. Vp&?|y = O then & = 0 in a neighbourhood of x.

Proof. Evaluation of the last equation (50) atx entails
((ZbPaC + (EcPab - d_)aPCb + )?bnac + )?Cnab - )?a cb)|x =0,

from which, projecting down withP* andI7%?, we deduce thap,|, = x.|» = 0. Now let
y() be asmooth curve drisuch thay(0) = x with y(¢) lying in a coordinate neighbourhood
of x for all r in the interval e, €). If we denote byj“(r) the tangent vector to this curve we
may define the derivatives

)'/rgr&-a’ < = ')‘/rgrq/ a,

[_)q;a e D o — Dé&*
=9y'V,.¢,, — =9V, xu,
dr V' Vi dr Y ViXa or

where all quantities are evaluated pf). Contracting’50)-d—50)-g with 3* we can trans-

form these equations into a first order ODE system in the variah€g(t)), x.(v(?)).

&4 (y()) and¥,b(y(r)) with D/dr as derivation. From the above all these variables vanish
atr = 0 so according to the standard theorem of uniqueness for ODE systems the variables
are identically zero along the curyér) (and in partlculalgh, ¢ = 0). Asy(r) was chosen

arbitrarily we conclude tha = 0 in a whole neighbourhood af [
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Remark 8. If the manifold is connected (and hence path connected) then the g(rjve
can be chosen joining any pair of points of the manifold and then the vectokfielzero
everywhere and not just in a single neighbourhood of a point.

From the calculations performed in this proof and in the pro&froposition Gve deduce
as a simple corollary that(™g4|, = 0 for allm € N if it holds form = 1, 2.

4.2. Constraints

From the above calculation of the normal form, the system variables are read off at once.
These are the variables appearing under derivation in the left hand gjg@)oflowever,
they are not algebraically independent because in the calculation pro¢g8¥sufme of the
equations involved do not contain derivatives of the variables at all (system constraints). The
most evident case of these constraints are the differential cond{Bdtizemselves. If we
review the whole procedure followed to d&0) we deduce that the other set of constraints
between the system variableq1) so(50) must be complemented with

(l) £g Pap = @Pup, £§ Hap = g,
() £ Ea=-pd;,  EWa=—-(n—p)xg (51)

In order to clarify that these two sets of equations are truly the constraints associated with
(50) we must show that they arise as a linear combination of some of the higher covariant
derivatives of(5) employed to get the normal form. An equation equivalent to the first
derivative of(5) is (11) but only its projections byP? and 7% (Eq. 12) really matter to
work out the normal form and these g6} 1l. Eq. (37)is also obtained fronfl1l) and it
is part of the normal system and not a constraint. As for the other derivatives they do not
give rise to any more equations with no derivatives of the system variables so the above
equations are the only constraints we must care about.

A first application of all the above calculations comes in the following result, already
proven in[10] using a normal form system written in terms of different variables.

Theorem 9. If the Lie algebra G(S) is finite dimensional then its dimension is bounded
from above by N = p(p+1)/2+ (n — p)(n — p + 1)/2.

Proof. To prove this theorem we must state what the upper bound to the maximum number
of integration constants for the system(50) is. As is very well known from the theory of
normal systems of PDE’s (see e[§]) such number is the number of system variables
minus the number of linearly independent constraints. The following table summarizes
these numbers for our system.

We have written explicitly the system variables and the total number for each of them.
The constraints are also indicated together with how many linearly independent equations
each constraint amounts to. This last part is not evident as opposed to the counting for
the system variables so the rest of the proof is devoted to show that the numbers given in
Table 1for the constraint equations are indeed correct.
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Table 1

Calculation of the highest dimension G£S)

System variables Constraints

¢, x o Kar Xa & b Eq. (51} Eq. (5141
2 n n n n® n(n+1)/2+ p(n — p) n

Eq. (51} First of all, we expand the Lie derivatives of these equations
£V Pap + W,(8 4 Poc + 87 Pac) = ¢ Pap
EV gy + W, (8P oIy + 87 pIuc) = xap. (52)
where the standard definition of the Lie derivative of a terizgrhas been applied
E; Pap = E°Ve Pap + Vb Pep + Vi Pac, (53)

(observe that the general formula of the Lie derivative with respect to a vector in terms of
its covariant derivatives still holds under a symmetric connection). We define new indexes
A, B, B’ in such a way that

PA = Pabv lIIB = 6psq’ SB = sC,

so capital indexes group together certain combinations of small indexes (expficitly
{a, b}, B={p, q} andB’ = ¢). The ranges of the new indexes ate=1, ..., n(n + 1)/2,
B=1...n2, B =1,...n. Using these new labels we can write in matrix notation the
homogeneous system posed by these constraints (we only concentrate in th€323t of

Yp
(Ms® (VP)pa Pa)| &8 | =0, (54)
—¢

(A=row index,B, B" = column indices) where the explicit expressions of the matrices read
(VP)pa = VePap, MaB =8P, Ppy + 871 Pay.

The number of linearly independent equations is just the rank of the matrix system of
(54). In principle the rank of this matrix will depend on the projecRy, and its covariant
derivative, meaning this that it will depend on the geometry of the manifold. However,
since we are interested in spaces with a maximum number of bi-conformal vector fields it
is enough to find the least rank of the above matrix for all possible projeBtgriVe start
first studying the rank oM, B whose nonvanishing components occur in the following
cases (no summation over the repeated indexes)

MA, =8Py, a#b,
MA, =2P4, a=b.

bl

p:a,q=b=>{

p=bg=a= M% =8"Pu, a#b,
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where we have assumed that we are working in the common (orthonormal) basis of eigen-
vectors ofP?, andIT%, so

- P - n—p
P, =diag...10...0), n“, = diag(0...01...1).

Hence we only need to count how many components of the pé are different from

zero because by construction these elements give rise to linearly independent rows of the
matrix M4 2 (the element31, 2" are in the same row of the matri4 2 and they do not
increase its rank becaugk > A). The sought number can be obtained from the following
diagram gathering into blocks ti#eindexes of the rows containing non-zero elements (we
express each index in terms of tensor indexes following the notdtien(a, b))

b4 b4

Block1={(1,1)(1,2) ... (4, p)} |Blockp+1={(p+1,1)...(p+1, p)}
p-1 14

Block2=1{(2,2)(2,3) ... (2, p)} |Blockp+2={(p+2,1)... (p+2 p)}
p—2 b4

Block3={(3,3)34) ... (3, p)} |Blockp+3={(p+3,1)... (p+3, p)}

—~N —N——
Blockp = {(p, p)} Blockp +n ={(»,1) ... (n, p)},
from which the rank of\f4 2 is
14+ p+pn—p)=3p(p+1)+ pn— p).

Note that this rank only depends on algebraic properties of the projBgt@nd not on its
actual form at some concrete space. Addition of the matriééy ¢ 4 and P4 only increase
the rank of the matrix of the homogeneous sys{é#) and so we do not need to take them
into account. The total number of constraints posey is then the rank of/, 2 plus
the rank of the matrixv4 2 constructed replacing,;, by I,

rank(M) + rank(N) = 3 p(p + 1)+ p(n — p) + 5(n — p)(n — p+ 1) + p(n — p)
= %n(n + 1)+ p(n — p).

Eq.(51)}I. In order to perform the analysis of these constraints it is enough to realize that
the 1-formsp’ andy} appearing inthe righthand side of each equation are invariantunder the
projectorsl1?, and P¢; respectively. Therefore the first equation(®1 )1l contains at least
n — p linearly independent equations and the secondpdmeingn the total sum of them.

The upper bound/ is then

N=2~|—n+n+n+n2—(n~|—%n(n+1)+p(n—p))
=+ +2)+3—p+ ) —-p+2). O
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This proof does not guarantee the existence of a Lie alggsan which the dimension
N is attained. However, it is not difficult to find explicit examples of pseudo-Riemannian
manifold possessing bi-conformal vector fields.

Proposition 10. The number N is the maximum dimension of G(S) if p,n — p ¢ {1, 2}
being this dimension attained for any pseudo-Riemannian manifold whose line element is
in local coordinates {x*},a=1,...,n

ds? = ¢2(x*)nQ dx® dr” + G5 (x")n; A i ?, (55)

where x* = {xl, L xPY A = {xp+l, ..., X"} are sets of coordinates and 170, nlﬂat met-
rics of the appropriate signatures depending only on the coordinates {x*} and {x*} respec-
tively.

Proof. This result is proposition 6.1 ¢10]. O

Spaces of previous proposition are calle@donformally flat. As stated irDefinition 12
they are a particular case @bnformally separable spaces and we may ask if they are the
only pseudo-Riemannian manifolds admittiNgndependent bi-conformal vector fields.
The answer to this and other questions such as their geometric characterization can be
settled by calculating the complete integrability conditiong5f). Remarkably this has
been already done but the whole procedure relies on hefty algebraic manipulations so we
have preferred to present these results in a subsequent paper. The interested reader can find
the full details of these calculations [ihl].

5. Local geometric characterization of conformally separable
pseudo-Riemannian manifolds

In this section we will show how the bi-conformal connection can be used to derive an in-
variant geometric characterization of conformally separable pseudo-Riemannian manifolds.
To begin with we define in precise terms what a conformally separable pseudo-Riemannian
manifold is.

Definition 11. The pseudo-Riemannian manifold @) is said to be conformally separable
atthe poing € V ifthere exists alocal coordinate chart {x', ..., x*} based ayin which
the metric tensor takes the form
El(x)Gaﬁ(xy)9 l1<a, ﬁv Y=p
9up(*) = § E2(x)Gap(x€), p+1<A,B,C<n (56)
0 otherwise
where 51, &> are C? functions on the open set defining the coordinate chattg)is

conformally separable if it is so at every pointe V. Any of the metric tensor&'ys Gyg,
E5G 4p shall be called a leaf metric.

Henceforth all our results will deal with conformally separable pseudo-Riemannian man-
ifolds at a point. From now on when working with conformally separable spaces written in
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the form of(56) we adopt the convention that Greek letters label indexes associated to one
of the leaf metrics whereas uppercase Latin characters are used for the other one.

Conformally separable pseudo-Riemannian manifolds are also knavenkig twisted
products. They comprise a number of particular cases which have received wide attention
in the literature under different nomenclatures. A summary of them is presented next.

Definition 12. Let x = {x?}, a = 1...n be the local coordinate system introduced in
Definition 11 A conformally separable manifold can then be classified in terms of the form
that the functionsg'q, = take in these coordinates as

(1) decomposable or reducibles?d= G o5(x€) dx® dx? + G 4 p(xC) dx? dx?,

(2) semi-decomposable, semi-reducible or warped produ«?t‘:oGaﬁ(xf) dx® dx? +
E(x€)G ap(xC) dx4 dx?, 2(x€) warping factor,

(3) generalized decomposable or double warpes? =68 51(xC) Gop(x€) dx® dxf +
Fo(x€)G A p(x€) dxA dxB, 51(x€), E2(x€) warping factors,

(4) twisted product: & = Gup(x€) dx® dx? + E2(x*)G 4 (x€) dx dxB

(5) conformally reducible: & = Z(x4)(Gyp(x€) dx® dxf + G 45(xC) dx? dx ),

(6) bi-conformally flat: d? = Z1(x*)nes(x€) dx® dxf + Eo(x¥)nap(xC) dx? dxB, g,
nap flat metrics of dimensiop andn — p, respectively.

The coordinate system &fefinitions 11 and 11 fully adapted to the decomposition of
the metric tensor butin general we cannot expectthis to be the case. Therefore it would be de-
sirable to have a result characterizing conformally separable pseudo-Riemannian manifolds
or any of the cases presentediefinition 12in a coordinate-free way. Next we prove an in-
trinsiclocal characterization valid for a general conformally separable pseudo-Riemannian
manifold which will enable us to derive characterizations for most of the particular cases
described irDefinition 12in a simple way. A lemma is needed first.

Lemma 13. The following assertion is true
— 1 — 1
Tape = 0 &= V Py = _;EanCv Vallpe = _mWaan« (57)

Proof. Firstofall, itis convenient to rewrite the conditid@f,. = 0 in an appropriate form.
From(16) we have

1 1
Mabc = 7Eapbc - 7Wunbc~ (58)
p n—p
Using the definitio ;. = V, P, + V. Py — V, Py We can isolatév,, P, getting
1 1
VbPac = 7(Eapbc + EcPab) - 7(Wanbc + chba)' (59)
2p 2(n — p)

Each(58) and (59)re equivalent td,;. = 0. Next we show the equivalence fif,. = 0
to the conditiong57). ExpandingV, P,. by means o{30) and use of57) yields

1 1
Vp Py = E(EHP;?C + E.Pyp) + E(PCpMpba + PapMpr) (60)
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1 1
VIl = 7(Wanbc + chab) - 7(HcpMpba + HapMphc)a (61)
2(n — p) 2
which are equivalent to (writ®&, Pp., V Iy in terms of M)
P 1 P 1
PcpM ab = _n _ chnabs HcpM ab = ;EcPabs (62)

whose addition leads t@,;. = 0. Conversely, suppose thdj,. = 0. Then inserting
(58) and (59)nto (30) gives us the condition oW, P, at once. The calculation for, [T,
is similar using the identities written in terms of,;,. [

Theorem 14. A pseudo-Riemannian manifold (V, g) is conformally separable at the point
p € Vifand only if there exists an orthogonal projector P,y such that the tensor Tp. formed
with Py and its complementary Il,, = O, — Pup is zero identically in a neighbourhood
of p. In such case Py, and I, are the leaf metrics of the separation.

Proof. To show that the condition of the theorem is necessary we simply choose the local
coordinates aroung in which the metric tensor takes the form (&6) and calculate the
tensorT,,. as inExample 3 Use of(28) readily implies thalTabc = 0. To prove that the
condition is also sufficient choose an orthonormal co- b{aﬂsls .0 } adapted taP,;, and

I1,,, that is to say, (we use index-free notation and index Iabel splitting@efinition 17)

n

14
=Zea0_a®67a, = Z et ©0",
a=1

A=p+1

wheree,, €4 = £1 (the exact value for each index A will depend on the signature of
0.»)- Now since

O b f B
0 = _)711}76‘0 = —]71&‘0/3 - )71300 s

i

we have
P 1 T P Y -B P P -B
Y el P50 @ 6% + 6" © ) + 750" © 6" + 6 87,
a=1

which by(57) entailsy® g. = 0. Similarly condition(57)on I shows thay?,. = 0. These

two conditions upon the connection coefficients imply by means of Frobenius theorem that
the distributions spanned b, . . ., 6" and{#” ™, .. ., 8"} are both integrable. Therefore

in a local coordinate systerx!, ..., x"} aroundp adapted to the manifolds generated

by these distributions (i.e. in these coordinates the manifolds are given by the conditions
x* = %, x4 = ¢4) the metric tensor takes the form

ds® = gyp(x*) dx® dx” + g4 p(x) dx? dlx?,
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and the tensor#®,;, andIT,;, look like

Pap = Gpp0®a8’p.  Tap = gup8" 8",
so the non-zero components of the Christoffel symbols are

g, = 38059, + 0,95 — 0,95,), s = 39°°0aGg,,

Iy =— %gapaprA» iy, = %QADaagBDv Mep = _%gADaDgﬁw

' pe = 39*P(989cp + dcYpg — 90Ypc);

where
9%9, = 8%, 9"Pgpp = 8" 5.

The only nonvanishing components M., E,, W, are thus

MyaB = 0494, Maap = —04948. Ea = —d4 log|det(g,s)l,

Wy = —9y log|det(g, g)l, (63)
from which we deduce that those #f;,. are
1 1
TuaB = 0a9ap + mgABWa, Taap = 04Gp + ;gaﬁEA, (64)

Thus we are left with the couple of equatidiéd) equalled to zero. The general solution of
the resulting PDE system is

gaﬂ — Go{ﬁ(-xs) e./\:l_()c")7 gAB — GAB()CD) e./\z()m)7

whereGqg, Gap, A1, A2 are arbitrary functions of their respective arguments with no
restrictions other than dek(z) # 0, detG 4p) # 0. Comparing these expression wW#6)
the result follows. O

Remark 15. A global characterization of conformally separable pseudo-Riemannian man-
ifolds was first given if23] and is this: a pseudo-Riemannian manifold is conformally
separable iff there exist two orthogonal families of foliations by totally umbilical hyper-
surfaces. The family of first fundamental forms of each hypersurface gives rise to the leaf
metrics of the decomposition of,gin the obvious way (this result was re-derived18]).

Theorem 14clearly states the geometric relevancelpf. as a tool to characterize
conformally separable pseudo-Riemannian manifolds. In fact the conditipn= 0 can
be re-written in terms of the factof and =, introduced in the definition of a conformally
separable metric. To that end we use the equivalent condi®@yand replace the 1-forms
E,, W, by their expressions given {{63) which can be written as

E, = —pll, 9, log|&1], W, = (p — n)P," 9, log|Z2|, (65)
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whence
Vi Pye = Ppcitg + Papte — Parurghc - Pcrurgalw (66)
where
E, Wq
Y= 2 T 2 p)

It is not difficult now to characterize intrinsically almost all the subcases presented in
Definition 12

Theorem 16. Under the hypotheses of Theorem 14 a pseudo-Riemannian manifold (V, g)
is locally

(1) decomposable or reducible if and only if E;, = W, = 0,

(2) a warped product if and only if E, = 0 and W, is an exact 1Hform,
(3) a double warped product if and only if both E,, W, are exact 1-form,
(4) a twisted product if and only if E; = 0,

(5) conformally reducible if and only if u, is exact.

In all cases the conditions are understood to hold only in a neighbourhood of a point p.

Proof. To show that the above conditions are necessary we only have to apply formula
(65) case by case and take into account that under the conditidrtseoirem 14

pa _ 8, a=a b=, e 8, a=Ab=B8B
0 otherwise 0 otherwise

where the local coordinates (86) have been set arounpd

(V, g) decomposable orreducible 1 = 8o =1= E, = W, =0.
(V, g) warped products E, =0, W, = (p — n)d, log|Z>|.

(V, g) double warpees E, = —pd, log|&1|, W, = (p — n)d, log|&2|.
(V, g) twisted products &1 = 1= E, = 0.

(V, g) conformally reducibles &1 = &2 = & = u, = —9, log|&|Y2.

The sufficiency follows from simple algebraic manipulations involving the conditions
of each case and the relations

04 &1 0w &2
Epx=—p = Wa=—(n—p)—

’

2

o
o

coming from(28) which holds due to the properf,,. = 0.
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® E,=W,=0= 0481 =0,82=0= 51 = E1(x*), 82 = E2(x*) = (V,0) is de-
composable or reducible.
e E,=0andW, exact= =1 = Z1(x*) and for some scalar functich we have
8 =
2

)
G
N

—(n—p) = 0P, 0=049,

[

which entailsZ, = E2(x%) = (V, g) is a warped product.

e E, andW, are both exact. A calculation similar to the previous point leadSte=
E1(x4), B2 = E2(x%) = (V, g) is double warped.

e £,=0= 81 =51(x*) = (V, g) is a twisted product.

e |f u, is exact then for some scalar functidrwwe have

— 30, 109| 82| = 9P,  —304 log| 51| = 04®

which implies that either¥(, g) is a double twisted product (and in particular con-
formally reducible withg = &1(x4)&>(x%)) or |51| = |&2| = (V, g) is conformally
reducible. O

Local characterizations of some of the cases presenfgtdorem 1@&re already known
and have been rediscovered several times by different procedures. For instance the reducibil-
ity condition is clearly equivalent t&, P,. = V,IT,. = 0 which was proven ifil5] in the
context of General RelativityZ5] also proves this result in Riemannian geometry). This
result is known in Riemannian geometry &sRham decomposition theorem and it was
formulated by de Rham in both local and global tef@is(the global version was formu-
lated as early as in 19J2]). A local characterization of Riemannian warped products is
sometimes attributed to HiepK@&3] but in [14] such characterization is already present.
Alternative local characterizations to thoseltfeorem 16f double warped products and
certain conformally reducible manifolds were found4,3] in the framework of General
Relativity and general conformally reducible Riemannian manifolds were locally charac-
terized in[1]. There are als@lobal characterizations of the cases discussediheorem 16
(se€[9] for a summary of them).

In any case our method is more general and simpler than the procedures followed so
far and it covers virtually all possible types of conformally reducible pseudo-Riemannian
manifolds being all of them presented in a single general réBaéidrem 1% This makes of
the bi-conformal connection animportant tool in the study of conformally separable pseudo-
Riemannian manifolds and we believe that it could play a key role in the research of these
manifolds because it is the natural connection which keeps the decomposition of the metric
tensor in the two leaf metrics defined by the project®sandI1,,. An explicit example
of this key role is the local characterization of conformally separable pseudo-Riemannian
manifolds with a conformally flat leaf metric, not covered Bigeorem 16 These cases
have never been tackled before and in the companion paper following this publication we
show how the use of the bi-conformal connection allows us to find a local characterization
in the same terms agheorem 16 The impatient reader may consult all the detail§lif]
but just to give a first glimpse we will say that this characterization comes in through the
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vanishing of a four rank tensor involving the curvature tensor of the bi-conformal connection
(in a sense it resembles the local characterization of conformally flat pseudo-Riemannian
manifolds by means of the vanishing of the Weyl tensor). More examples showing explicitly
the usefulness of our techniques are supplied in next section.

6. Examples

Example 17. As our first example we consider the four dimensional pseudo-Riemannian
manifold with metric given by

ds? = (W2 sin? 6 — o) dr® + 292 sin? 6 dep dr + B(dr? + r? d9?) + @2 sir? 6 dp?,

where the coordinate ranges afec <t <00, 0<r<o0o, 0 <6 <m 0< 6 < 27 and

the functions¥, «, B and ® only depend on the coordinatess. We will try to find out

the conditions under which the metric is conformally separable with the hypersurfaces
t = const as one of the leaves. A simple calculation shows that the profggiprojecting
vectors onto the distribution generated by the above hypersurfaces is (now and henceforth
all the components omitted in an explicit tensor representation are understood to be zero)

9 w2
Prr=P9:P¢¢>=1, P¢t=ﬁ,
which entails
b
Pu= 3 Sif6, P, = B Pop = r? B2,

Ppp = ®* Sinf6, Py = W2 sinfo.
From here we can calculate the components of the tehgprnd set them equal to zero.
After doing this we find the following independent conditions (letter subscripts mean
partial derivatives)

-V, +0,.d =0, —Udy + Wp® = 0,
which are fulfilled if and only if

|P| = [¥]
Under these conditions the metric takes the form

ds? = w2 sir? 0(dr + dp) — o d® + B2(dr? + r2 db?).
This metric is not written in the form db6) and so it is not evident that it is conformally

separable with the hypersurfages const as the leaves. This is so because the remaining
coordinates,, 6, ¢ are not adapted to the separation and so a coordinate change would be
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necessary to bring the above metric into the f¢8). An advantage of our technique is that

we do not need to find this coordinate change and only by prescribing one of the leaves of
the separation have we been able to determine easily that our pseudo-Riemannian manifold
is conformally separable. In this particular example we can even go further and calculate the
1-formsE, andW,. In this way we obtain thak, = 0 whereadV, is closed (locally exact)
soTheorem 16ays that this pseudo-Riemannian manifold is locally a warped product.

Example 18. In the foregoing results we have only concentrated on conformally separable
pseudo-Riemannian manifolds but nothing was said about manifoldsavifbvmal slices
and not conformally separable. To illustrate this case let us consider the four dimensional
pseudo-Riemannian manifold given in local coordindtés x2, x3, x*} by
ds? = () E1(xL, x2, x3)(dx1)? 4+ Ea(xt, 12, x3)(dx?)? + Ea(xt, x2, x3)(dx®)?]
3
+23° By d* + w(x) (i), (67)
i=1

wherex = {x1, x2, x3, x*) and @(x), Bi(x), ¥(x), {Z;(x%, x, x3)};—1.2 3 are functions at
leastC? in an open domain. The above line element is the most general four dimensional
metric admitting a local foliation by three dimensional conformal hypersurfaces (here these
are given by the condition* = const) because according to a classical result any three
dimensional metric tensor can be written as the bracket term multipy{nyyin Eq. (67).

The non-zero components of the orthogonal projeétéy associated to the foliation
x* = const (see previous example) are

; Bi(x)
PlLi=P5=pP%=1  P4= ,
! 2 3 4 d(x)E;(xL, x2, x3)

i=123 (68)

from which we easily get
P11 = P2 = P33 = ®(x), Pis=pi(x), i=123,
3

2
Pas = Z .3,' (x)

2 D) E (L A2 1)

Using this we can check the conditidp,. = 0 and find out what is obtained. This is a
rather long calculation which is easily performed with any of the computer algebra systems

available today (the system used here was GRTensorll). The result is that theTgpsor
does not vanish in this case although a calculation ugishows the important property

P’ Py P Ty = 0. (69)

Theorem 19. A necessary condition that a four dimensional pseudo-Riemannian manifold
can be foliated by conformal hypersurfaces with associated orthogonal projector Py, is EQ.

(69).

This result suggests that it may well be possible to generalize conditiofseafrem
14 to metrics of arbitrary dimension which are not conformally separable replacing these
conditions by(69). The true extent of this assertion is under current research.
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Appendix A. Basic identities involving the Lie derivative

In this appendix we recall some properties of the Lie derivative needed in the main
text. Despite their basic character, they are hardly presented in basic Differential Geometry
textbooks and the author is only awarg[24,18]as the only references in which they are
studied.

Proposition A.l. For any symmetric connection v defined in a differentiable manifold V,
- ai...dp

any vector field & at least C? and a tensor field T b...by € T?,(V) we have the following
identities

E'E Ve = gbgcga + Edﬁacdb, (A1)
s
- = — el j1TA ]
Ve B T5%, = £ VeT 5%, = = D & v TV,
j=1
q
aj...ds
+ Z(Eg )ij)r,.ij,irbj+l...’ (A2)
j=1
£: R%ap = Va(E: ¥'pe) — Vi(E: ¥ A3
£ cab = asybc) b(g)’ac)a ()

wherey?,. are the components of the connecﬂ%andﬁ"hcd its curvature (these identities
are calculated under the conventi@) for the curvature tensor). Furthermore if a metric
tensor g, is set inV andV is now the metric connection associated to it then

EE yubc = %gae[vb(f'g gce) + VC(EE ghe) - VE(EE ghc)]' (A4)

Remark A.2. The Lie derivative of the connection is a tensor even thoufgh is not. To

see this we denote Kb} the one-parameter group of local diffeomorphisms generated by
the vector fiel and by @7}y)“;. the transformed of the connection undgrwhich in the
local coordinates = {x%, ..., x"} is calculated by means of the formula

0% 37, o, 90, 9 [0
(@7 5e) = ox" oxb Axe I"2( @) + ax’ axb BTCS ’
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Hence neitherg}y)*,. nor y“y. are tensors but the differenc@i(y)?s. — y“s. is a tensor
and this implies that

Ilm (¢>§I‘<y)ahc - Vabc
s—0 N

is also a tensor which is the Lie derivative of the connection.
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